MCMC notes by Mark Holder

Bayesian inference

Ultimately, we want to make probability statements about true values of parameters, given our
data. For example P(ag < a1|X). According to Bayes’ theorem:

P(X]6)P(6)

POIY) = =555

It is often the case that we cannot calculate P(X), the marginal probability of the data.

Markov chain Monte Carlo is (by far), the dominant computational approach to conducting Bayesian
inference. The “Monte Carlo” part of the name reflects the fact that we are going to perform a
random simulation — the algorithm uses a pseudo-random number generator to explore parameter
space. The “Markov chain” part of the name refers to fact that we are going to conduct the simula-
tion by iteratively updating the state of the simulator using rules that depend only on the current
state of the system. This type of stochastic system (one which “forgets” its history) is referred to
as a Markov chain.

Markov chains

A Markov chain connects a series of states. You can think of it as a walk through a “state space”.

e a state is the complete description of the “value” of the chain as it walks. We’ll be walking
through parameter space, so the state space is the space of all parameter values in our model.
Typically the state space is continuous, but I'll explain most of the theory in problems with
discrete state space.

e an index refers to which step of the chain we are currently at. There are many uses for
continuous-time Markov chains (in which the index can assume any numerical value), but the
Markov chains that we will be using in MCMC are discrete time. This means that the index
is simply a count of the number iterations that the algorithm has been running. The index
is often referred to as the “iteration,” the “generation,” or the “step number.” In a discrete
time Markov chain, you update the state once per interval (although you can remain in the
same state and still consider that an update).

There is a huge literature on Markov processes, but there are only a few crucial aspects of Markov
chains that we need to understand if we want to understand MCMC.

e Under mild conditions, a Markov chain will converge to a stationary distribution (also called
a steady-state distribution) after a large number of steps. This distribution will be the same
regardless of the starting point of the chain.

e Markov chains that have a high probability of changing state in a single step will converge to
the stationary distribution faster.

Transition probabilities

A Markov chain can be defined by describing the full set of probability statements that define the
rules for the state of the chain in the next step (step i+ 1) given its current state (in step 7). These
transition probabilities are analogous to transition rates if we are working with continuous-time
Markov processes.

Consider the simplest possible Markov chain: one with two states
(0, and 1) that operates in discrete time. The figure to the right
shows the states in circles. The transition probabilities are shown
as arcs connecting the states with the probabilities next to the line.

i . 0.6
The full probability statements that correspond to the graph are: .
P(zi1 = 0lz; =0) = 0.4 0.4 @\/@ 0.1
P(ziy1 =1jz; =0) = 0.6 0.9
P(zi41 =0jz; =1) = 0.9
P(xiy1 =1z, =1) = 0.1

Note that, because these are probabilities, some of them must sum
to one. In particular, if we are in a particular state at step 7 we
can call the state x;. In the next step, we must have some state so
1 =3 P(zit1 = jla;) for every possible z;.

Figure 1: A graphical depic-
tion of a two-state Markov
process.

Note that the state at step ¢ + 1 only depends on the state at step
i. This is the Markov property. More formally we could state it as:

P(zit1]xi) = P(xiy1|zi, i)

where k is positive integer. What this probability statement is saying is that, conditional on z;,
the state at ¢ 4+ 1 is independent on the state at any point before 7. So when working with Markov
chains we don’t need to concern ourselves with the full history of the chain, merely knowing the
state at the previous step is enough.!

Clearly if we know x; and the transition probabilities, then we can make a probabilistic statement
about the state in the next iteration (in fact the transition probabilities are these probabilistic
statements). But we can also think about the probability that the chain will be in a particular
state two steps form now:

]P)(xiJrQ == 0|IL'Z == 0) ==]P(‘Ti+2 == 0|ﬂ£‘i+1 == 1)]P)(1Ei+1 == 1|:El == 0) + P(.’EiJrQ == 0|5Ei+1 == O)]:P)(:,Ul+1 == 0|l‘1 == 0)
= 09x06+04x%0.4
= 0.7

Here we are exploiting the fact that the same “rules” (transition probabilities) apply when we
consider state changes between ¢ + 1 and ¢ + 2. If the transition probabilities are fixed through the
running of the Markov chain, then we are dealing with a time-homogeneous Markov chain.

! There are second-order Markov processes that depend on the two previous states, and third-order Markov process
etc.. But in this course, we’ll just be dealing with the simplest Markov chains which only depend on the current
state.

=0)

Pr(x_i

1.0

0.8

0.6

0.4

0.2

0.0

Note that:

P(.’Ei+2 = 1|l’l = 0) = P(.’Ei+2 = 1|l’7;+1 = 1)P(ZEH_1 = 1|l‘l = 0) + IP(IH_Q = 1|l’7;+1 = O)P(SL‘H_l = 0|J,‘l = 0)

0.1%0.6+0.6+0.4
= 03

So, if we sum over all possible states at ¢ + 2, the relevant probability statements sum to one.

It gets tedious to continue this for a large number of steps into the future. But we can ask a
computer to calculate the probability of being in state 0 for a large number of steps into the future
by repeating the calculations (see the Appendix A for code). Figure (2) shows the probabilities of
the Markov process being in state 0 as a function of the step number for the two possible starting
states.

1.0

0.8
|

Pr(x_i=0)

0.4

0.2

T T T T T T T T
0 5 10 15 0 5 10 15

P(z; = Olzo = 0) P(z; = Olzo = 1)

Figure 2: The probability of being in state 0 as a function of the step number, i, for two different
starting states (0 and 1) for the Markov process depicted in Figure (1).

Note that the probability stabilizes to a steady state distribution. Knowing whether the chain
started in state 0 or 1 tells you very little about the state of the chain in step 15. Technically, =15
and x(are not independent of each other. If you work through the math the probability of the
state at step 15 does depend on the starting state:

P(x15 =0|zp =0) = 0.599987792969
P(x15 = 0|z =1) = 0.600018310547

But clearly these two probabilities are very close to being equal.

If we consider an even larger number of iterations (e.g. the state at step 100), then the probabilities
are so close that they are indistinguishable.

After a long enough walk, a Markov chain in which all of the states are connected? will converge
to its stationary distribution.

Many chains or one really long chain

When constructing arguments about Markov chains we often flip back and forth between thinking
about the behavior of an arbitrarily large number of instances of the random process all obeying the
same rules (but performing their walks independently) versus the behavior we expect if we sparsely
sample a very long chain. The idea is that if sample sparsely enough, the sampled points from one
chain are close to being independent of each other (as Figure 2 was meant to demonstrate). Thus
we can think of a very long chain as if we had a large number of independent chains.

Stationary distribution

Notice in the discussion above that the probability of ending up in state 0 as the number of iterations
increased approached 0.6. What is special about this value?

It turns out that in the stationary distribution (frequently denoted 7r), the probability of sampling
a chain in state 0 is 0.6. We would write this as @ = {0.6,0.4} or the pair of statements: mwy =
0.6, = 0.4.

How can we show that this is the steady-state (equilibrium) distribution? The flux “out” of each
state must be equal to the “flux” into that state for a system to be at equilibrium. Here it is helpful
to think about running infinitely many chains. If we have an equilibrium probability distribution,
then we can characterize the probability of a chain leaving state 0 in at one particular step in the
process. This is the joint probability of being in state 0 at step ¢ and the probability of an 0 — 1
transition at point ¢. Thus,

At the equilibrium P(z; = 0) = 7, so the flux out of 0 at step i is woP(x;41 = 1]z; = 0). In our
simple (two-state) system the flux into state 0 can only come from state 1, so:

P(1—0ati) = P(x; =1)P(xiq =0z =1)
= W1P($i+1 = O]aci = 1)

If we force the “flux out” and “flux in” to be identical:

W0P($i+1 = 1‘$i = 0) = 71'1]P)($i+1 = 0|$z = 1)
@ _ P($i+1 = 0‘15‘7, = 1)
™1 a P(l’i_;,_l = 1‘:1% = 0)

2The fancy jargon is “irreducible.” A reducible chain has some states that are disconnected from others, so the
chain can be broken up (reduced) into two or more chains that operate on a subset of the states.

We can then solve for the actual frequencies by recognizing that 7r is a probability distribution:
Y-
k

For the system that we are considering;:

™o _ 09

™1 0.6

™y = 1.571'1
157wy 4+m = 1.0

™ = 0.4

™y —= 0.6

Thus, the transition probabilities determine the stationary distribution.

If we can choose the transition probabilities then we can construct a sampler that will
converge to any distribution that we would like.

When we have a state set S with more than 2 states, we can express a general statement about the
stationary distribution:

mi =Y mpP(wi = jlvi = k) (1)
keS

The connection to the “flux out” and “flux in” argument may not seem obvious, but note that the
“flux out” can be quantified in terms of the 1 - the “self-transition.” Let S»; be the set of states
that excludes state j, so the “flux out” is:

flux out of j = mP(zi11 € Syjlw; = 5)
= m[1 =Pz € jlo; = j)]

The flux in is:

flux into j = Z T P(zit1 = jlzi = k)
kecS;ﬁj

Forcing the fluxes to be equal gives us:

m [l =Pz = jlos =) = Y mP(ei1 = jlai = k)
/CES#J'
m = mP@i =jlri=5)+ Y mP@=jli=k (2
kES;é]'
= > mP(i = jlui = k)
kes

=0)

Pr(x_i

1.0

0.8

0.6

0.4

0.2

0.0

Mixing

We just saw how changing transition probabilities will affect the stationary distribution. Perhaps,
there is a one-to-one mapping between transition probabilities and a stationary distribution. In the
form of a question: if we were given the stationary distribution could we decide what the transition
rates must be to achieve that distribution?

It turns out that the answer is “No.” Which can be seen if we examine equation (2). Imagine
dropping the “flux out” of each state by a factor of 10. Because the “self-transition” rate would
increase by the appropriate amount, we can still end up in the same stationary distribution.

How would such a chain behave? The primary difference is that it would “mix” more slowly.
Adjacent steps would be more likely to be in the same state, and it would take a larger number
of iterations before the chain “forgets” its starting state. Figure (3) depicts the same probability
statements as Figure (2) but for a process in which P(z;11 = 1]z; = 0) = 0.06 and P(z;41 = 0|z; =
1) = 0.09.

1.0

Pr(x_i=0)
0.6
!

0.4

0.2

0.0
|

T T T T T T T T T T
0 10 20 30 40 0 10 20 30 40

P(z; = Olzo = 0) P(z; = 0|z = 1)

Figure 3: The probability of being in state 0 as a function of the step number, ¢, for two different
starting states (0 and 1) for the Markov process depicted in Figure (1) but with the state-changing
transition probabilities scaled down by a factor of 10. Compare this to Figure (2).

Thus, that the rate of convergence of a chain to its stationary distribution is an aspect of a Markov
chain that is separate from what the stationary distribution is.

In MCMC we will design a Markov chain such that its stationary distribution will be identical to
the posterior probability distribution over the space of parameters. We will try to design chains
that have high transition probabilities, so that our MCMC approximation will quickly converge to
the posterior. But even a slowly mixing chain will (in theory) eventually be capable of providing

an approximation to the posterior probability.

Detailed Balance

In principle, we could use the information in Equation (1) to inform us as to how to construct a
chain with a desired . In practice, this is difficult when we have a large number of states. In the
continuous parameter case, we have an infinite number of states and the summation becomes an
integral. Setting transition probabilities in a general way such that the total flux into and out of
any state satisfies the property shown in Equation (1) is tricky.

Typically, we restrict ourselves to a subset of possible Markov chains: those that satisfy detailed
balance for all pairs of states j and k:

miP(2ip1 = klzi = j) = mP(zip1 = jla = k) (3)
Detailed balance means that for any two possible states, the flux between them balances out.

Clearly, if the flux out of j into k is exactly matched by the flux from k into j, then Equation (1)
will also be satisfied (the total flux out of j will be balanced by the total flux into j).

Another way to express the detailed balance restriction is to put the transition probabilities on one
side of the equation and the stationary frequencies on the other:

7 Pleip =jlzi=k)

= (4)

L IP)(:U,'_H = k\xz = _])

MCMC

In the Metropolis-Hastings algorithm, we choose rules for constructing a stochastic walk through
parameter space. We adopt transition probabilities such that the stationary distribution of our
Markov chain is equal to posterior probability distribution. In notation we would like:

my, = P(0;|Data)

Let’s work through an example for which we can calculated the posterior probabilities analytically,
and then construct a MCMC algorithm that will converge to those posterior probabilities.

Double-headed coin

Imagine a store that sells four-packs of quarters, but in some of the packs some of the coins have
George Washington’s head on both sides (P(H) = 1 for these coins) while the remaining coins are
fair coins (P(H) = P(T") = 0.5).

Further more there are equal numbers of packages that contain 0, 1, 2, 3, or 4 double-headed coins,
and the packages are not labelled.

Someone grabs a package at random and records the number of heads from two experiments in
which all for coins are flipped. In the first experiment all four flips are heads. In the second
experiment three of the four flips are heads.

We want to make a probability statement about the number of coins in the pack that are double-
headed. Thus our data is D = {d; = 4,ds = 3}. We have one parameter, #, which can take on 5
values: 6 € {0,1,2,3,4}.

If the five times of packs are equally likely, then we can express the prior probability of each value
of § as 1/5.

We can calculate the probability of different number of heads, h, given each possible value of 6§ by
calculating the probability of d — 6 heads in 4 — 8 flips. We use these likelihood calculations and
Bayes formula:

P(D|O)P(O) P(D,0)
POID) = P(D) P(D)
to produce the following table:
0
0 1 2 3 4 Sum
P(d = 416) 1/16 2/16 4/16 8/16 | 16/16
P(d = 3|6) 4/16 6/16 8/16 8/16 0
P(d = 2|6) 6/16 6/16 4/16 0 0
P(d = 1]6) 4/16 2/16 0 0 0
P(d = 06) 1/16 0 0 0 0
S o P(d =il6) 1 1 1 1 1
P(d; = 4|0) 1/16 2/16 4/16 8/16 | 16/16
P(dy = 3|0) 4/16 6/16 8/16 8/16 0
P(D|6) 4/256 | 12/256 | 32/26 | 64/256 0
P(9) 0.2 0.2 0.2 0.2 0.2 1
P(6, D) 4/1280 | 12/1280 | 32/1280 | 64/1280 | 0
P(D) = 3", P(6, D) 112/1280
P(0]D) = T 1/28 | 3/28 2/7 4/7 0 1

Table 1: Probability calculation for four coins, and data consisting of dy = 4,ds = 3

MCMC

In this case, we can simply calculate the posterior probability of 6 given the data. But, in more
complicated scenarios we cannot perform calculations for all possible values of . When we cannot
try all possible values of 6, then we can’t sum them to get P(D). In fact, our inability to calculate

P(D), the marginal probability of the data, is the primary reason that we usually have to resort to
MCMC to perform Bayesian inference.

Recall, that in MCMC we are going to explore the space of parameters. In the case of the coin-
example, there are 5 possible values for 8. So we need to construct a Markov chain with 5 states.
Figure (4) shows one example. Note that not all of the states are adjacent, in the sense that there
is not an arc between all possible pairs. Thus, it would not be possible to move from state 0 to state
2 in a single step. But that is fine - a Markov chain with this architecture could be constructed to
sample the posterior probability distribution. The m;; labels on the arcs mean “the probability of

mo,0 mi ma2 ms3s my4

)

)

Figure 4: A graphical depiction of a five-state Markov process.

moving from j to k.”

How can we construct a chain with the desired stationary distribution? We have to choose transition
probabilities that obey detailed balance (equation 4). The other constraint is that the sum of the
probabilities over all states at ¢ + 1 (conditional on the state at i) must be 1.

Specifically, we would like:

7 = PO =0|D) = DLI8=0P(6=0)

P(D)
= P<9=1ID>=P(D|9§»<11))I§(9:1>
m = B=ajp) = PRI DR

Note that in our compact notation on the graph, mg; = P(zi41 = 1|z; = 0), thus we can rephrase

equation (4) as:
T My

Uy’ ijg
So if we want to set mg and mj o so that the transitions between 0 and 1 obey detailed balance
and the stationary distribution is the posterior distribution we have:
mi0 o
mo,1 ™

_ <IP’(D\9 TP)(OI))]};(Q - 0)>/ (]P’(D|0 ;(%T(e - 1)>

P(D|6 = 0)P(6 = 0)
P(D|6 = 1)P(6 = 1)

A mathematically boring, but important, thing happened in the last step: the P(D) crossed out.
Thus in order to express the ratio of move probabilities we don’t need to be able to calculate P(D).

This is crucial — in fact this is the reason we use MCMC. Recall that we cannot calculate P(D) for
most “real-world” problems because it involves summing over states. Fortunately, we don’t have
to calculate it to do MCMC.

In our coin example, we can see that P(D|0 = 1)P(6 = 1) is three times higher than P(D|0 = 0)P(0 =
0). Thus we need to ensure that the probability of moving from 0— 1 is 1/3 the probability of
moving from 1 — 0. For instance, we could set mg; = 1 and m;o = 1/3. Or we could choose
mo,1 = 1/2 and my 9 = 1/6. Which should we use? We’d like an MCMC simulation that converges
quickly so we should set the transition probabilities as high as possible. So, using mg; = 1 and
mi,0 = 1/3 sounds best.

Similar arguments lead us to the conclusion that m o = 1 and mg; = 3/8. However this reveals a
problem: setting these four transition probabilities in this way means that P(x;4; = Olz; = 1) =1/3
and P(z;+1 = 2|z; = 1) = 1. But this violates fundamental rules of probability - the probability of
all mutually-exclusive events must sum to 1.0. With our transition probabilities it exceeds 1.

One solution is to view a transition probability as a joint event: the move is proposed and the
move is accepted. We can denote the probability of proposing a move from j to k as ¢(j, k). We
can denote the acceptance probability of a move from j to k (given that the move was proposed)
as a(j, k). If we were to use xé_ﬂ to denote the state proposed at step 7 + 1 then

(k) = Plaj =kl =)
a(j k) = Plai = klo = j,zi, = k)

This means that we can choose proposal probabilities that sum to one for all of the state-changing
transitions. Then, we can multiply them by the appropriate acceptance probability (keeping that
as high as we can, but < 1). So, we get

miy _ q(1,0)a(1,0) _ P(D|9 = 0)P(0 = 0))
mo1 q(0,1)a(0,1) P(D| = 1)P(0 = 1)

We have a great deal of flexibility in selecting how we perform proposals on new states in MCMC.
We have to assure that ¢(j,k) > 0 whenever ¢(k,j) > 0; failing to do this means that the ratio
of proposal probabilities will be 0 in one direction and infinite in the other. It is fine for ¢(j, k) =
q(k,7) = 0 for some pairs of states (we already said that it was OK if not all states were adjacent in
the Markov chain — note that two states that are not adjacent still fulfill detailed balance because
both fluxes are 0).

Once we have chosen a proposal scheme, though, we do not have as much flexibility when choosing
whether or not to accept a proposal. Rearranging terms in equation (5) to put the acceptance

10

probabilities on one side gives us:

a(1,0) (D6 = 0)(

a(0,1) — P(DJf = 1)

- (G

>

=0
1

>

or, in words,

acceptance < likelihood > (prior) (Hastings > (6)

ratio ratio ratio ratio

here the name “Hastings ratio” comes from Hastings (1970). We can generalize this to any pair of
adjacent states, j and k, by substituting in j for 0 and k for 1:

alk,j) _ (P(Dlé’:j)> (P(sz)> <Q(ja k)))
a(j, k) P(D|0 = k)) \P(6 = k)) \q(k,])
It also applies in the case of continuous parameters (with few restrictions), however then we have ra-

tios of probability densities rather than probabilities. The MCMC algorithm that exploits Equation
(7) is referred to as the Metropolis-Hastings algorithm (Metropolis et al., 1953).

Metropolis-Hastings in a program

Equation (7) express the fundamental constraint that we must obey when constructing an MCMC
sampler. The last step toward being able to write a piece of software to perform this algorithm is
to think about how this constraint can be implemented. As we simulate a Markov chain, we start
from a valid state. Thus, at each step, ¢, we have a current state, ;. In an iteration:

1. We propose a new state, x;j ; using code that proposes move according to the probability
statements encapsulated in g(z;, 7).

2. We calculate an acceptance probability, a(x;, z +1), for the move we proposed.

3. If we draw a uniform random number less than this acceptance probability, then we set
Tiy1 = xj,q, otherwise we set z;41 = ;.

4. We add one to the step count 7 + 7+ 1

Note that when we reject we stay in the same state. Thus for every “destination” state, k, from
starting state, j, we add ¢(j, k) (1 — a(j,k)) to the j — j transition probability. We don’t have to
worry about enforcing detailed balance for the j — j transition (because the “flux out” has to be
the same as the “flux in” for any probability we assign).

Note that we have to have an acceptance probability, while equation (7) gives us the ratio of
probabilities between states. The insight that we use to proceed is that we want to maximize the
probability that the Markov chain move through state space. We can calculate the acceptance ratio
for any pair of states because we can calculate the likelihood, prior probability (or prior probability
density), and proposal probability (or proposal probability density) at any state.

To make things slightly more concrete, let’s use A to represent the acceptance ratio. Imagine that
ofxi, 2,) /a(rs, v) = A > 1. This means that oz, 2) ;) > a(zj,;,2;). There will be an

11

infinite number of choices of acceptance probabilities that satisfy this, but we want to make the
probabilities as big as possible. The maximum value for a probability is 1, so we can simply set:

a($i5$;+1) =1
1
a(@iy,wi) = A
In the alternative scenario, a(xs,),)/a(xi, 2, ;) = A < 1. We can satisfy this an maximize
changing state by

a(x{£+17 xl) =1

a(miv‘r;+l)

I
h

As we simulate a Markov chain, we can figure what condition we are in by imagine if we had
proposed the reverse move (j, ; — x; instead of z; — ;). We can calculate the acceptance ratio
for the pair of moves (forward and reverse) using equation (7). If the forward probability must be
higher, then we set the acceptance probability to 1. If the forward probability must be the lower
probability, then we set the acceptance probability to be equal to the acceptance ratio.

This leads to the following rule:
P(D|0 = z' P(6 = ! A
a(xi,x;_H) = min [1’ < (D] xz+1)> ((xz—l—l)) <Q<xz+1lx))]
P(D| = ;) P(6 = ;) q(zi, 7))

Double-headed coin MCMC

Returning to the example of estimating the number of double-headed coins. We can use a proposal
distribution in which we propose either of the adjacent states in the five-state Markov chain over the
number of coins that are double-headed with probability 0.5. This means that when we ¢(j, k) =
q(k,7) = 0.5 for all adjacent states. Thus the Hastings ratio is 1 for all possible moves.

We can use the likelihoods, priors (from the table 1) along with this Hastings ratio to calculate
acceptance probabilities. Multiplying acceptance probabilities by the proposal probabilities yields
the Markov chain shown in Figure (5). Note that we do not generally calculate transition proba-
bilities when doing MCMC - we resort to MCMC when we cannot visit all of the possible states.

Figure 6 shows a trace plot of the sampled values for 6.

In this example some of the transitions probabilities are 0. This is not a problem here because these
probabilities are all associated with the state § = 4 which has posterior probability of 0 (because it
conflicts with the data, resulting in a likelihood of 0). If state § = 2 and 6 = 4 had both had posterior
probabilities of 0, then we would not have constructed a valid (irreducible) Markov chain for the
purposes of MCMC. There would have been no way to get from state 1 to state 3, because all of
the paths would be “blocked” by a transition with probability 0. This is rarely a problem, because

12

theta

Figure 5: A graphical depiction of a five-state Markov process with transition probabilities calcu-
lated for a equiprobable proposal distribution and the data-based calculations from table 1.

most parameters combinations in “real-world” problems cannot result in posterior probabilities of
0. If you are working with a problem in which some of the posteriors can be 0, then you have to
assure that the states with non-zero posterior probability are connected in your Markov chain.

If the posteriors of some states are very low, then you can end up with very small transition
probabilities. Technically, if the transition probabilities are greater than zero, then the chain is
irreducible and eventually the MCMC simulation will converge to the stationary distribution. In
practice, very low transition probabilities between different “islands” of states represents a very
demanding inference problem. Mixing will almost certainly be very slow, and your inference from
MCMC can be misleading because any finite sampling of the Markov chain can miss very appreciable
parts of parameter space. Running independent simulations from different starting points is one
way to diagnose a Markov chain that is mixing slowly.

0 20 40 60 80 100

Figure 6: Trace of 6 values for the first 100 iterations of a MCMC run

13

A Code to calculate probabilities for two-state Markov chain

Python code, two_state.py, to generate probabilities for a certain number of iterations:

#!/usr/bin/env python
import sys
from random import random as uniform

a_to_b = float (sys.argv[1l])

assert (a_-to_b > 0.0 and a_to_b <= 1.0)
b_to.a = float (sys.argv[2])

assert (b_to_.a > 0.0 and b_to_a <= 1.0)
ti_prob_list = [a_to_b, b_to_a]

b_to.b =1 — b_to_a

state = int(sys.argv[4])

assert (state in [0,1])

if state = 0:

prob_list = [1.0, 0.0]
else:

prob_list = [0.0, 1.0]
num_it = int(sys.argv[3])

assert (num-_it > 0)

print "Gen\tPrZero\tPrOne”

for i in xrange(num_it):
print ”\t”.join ([str(i)] + [str(p) for p in prob_list])
pb = prob_list[0]xa_to_b + prob_list [1]*xb_to_b
prob_list = [1—pb, pb]

R code, plotProbTrace.R, to create plots from a file with columns labelled “Gen” and “PrZero”:

fn = commandArgs(TRUE)

d = read.table(fn, header=TRUE, sep="\t");
pdf (paste(fn, ’'.pdf’, sep=""));

plot (dGen, dPrZero, xlab="1”, ylab="Pr(x_-i=0)", type="1", ylim=c(0,1));
dev.off ();

bash invocation using the scripts to create pdf documents:

$ python two_state.py 0.6 0.9 20 0 >start_from_0.txt
$ R —no—save —f plotProbTrace.R —args start_from_0.txt
$ python two_state.py 0.6 0.9 20 1 >start_from_1.txt
$ R —no—save —f plotProbTrace.R —args start_from_1.txt

14

B Snippet of code for double-headed coin MCMC

likelihood = calc_likelihood (state)
assert (likelihood > 0.0)
counts = [0]x(num_coins + 1)
sys.stderr.write (”"Gen\tlike\ttheta\n”)
for i in xrange(num_it):
sys.stderr. write ("%d\t%f\t%d\n” % (i, likelihood , state))
counts[state] += 1
prev_likelihood = likelihood
if random.random() < 0.5:
proposed = state + 1
if state > num_coins:
proposed = 0
else:
proposed = state — 1
if state < 0:
proposed = num_coins
Prior ratio is 1.0, se we can ignore it

Hastings ratio is 1.0, se we can ignore it

likelihood = calc_likelihood (proposed)
if likelihood > prev_likelihood:
state = proposed
else:
if random.random() < likelihood /prev_likelihood:
state = proposed
else:
likelihood = prev_likelihood

print " Posterior probabilities:”
for state in range(num_coins + 1):
print state, float(counts|[state])/num_it

Full program at http://phylo.bio.ku.edu/slides/coin_contamination.py.txt

15

http://phylo.bio.ku.edu/slides/coin_contamination.py.txt

References

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast
computing machines. J. Chem. Phys., 21(6):1087-1092.

16

	Code to calculate probabilities for two-state Markov chain
	Snippet of code for double-headed coin MCMC

