Some of these slides have been borrowed from Dr.
Paul Lewis, Dr. Joe Felsenstein. Thanks!

Paul has many great tools for teaching phylogenetics at his
web site:
http://hydrodictyon.eeb.uconn.edu/people/plewis


http://hydrodictyon.eeb.uconn.edu/people/plewis

Markov chain Monte Carlo

e Simulates a walk through parameter/tree space.

e | ets us estimate posterior probabilities for any
aspect of the model

e Relies on the ratio of posterior densities between
two points
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MCMC robot’'s rules
Slightly downhill s‘reps / \ Drastic "off the cliff"
are usually accep‘red downbhill steps are almost

never accepted

With these rules, it is easy to
see that the robot tends to
stay near the tops of hills

Uphill steps are
always accepted
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10 -

(Actual) MCMC robot rules

Drastic “off the cliff"

Slightly downhill steps, - N downhill steps are almost
are usually_accep‘red, N never accepted because
because R is near 1/ /\ . R is near O

/-—_ . \ .

Currently at 6.20 m

Proposed at 5.58 m N
_ _ v | Currently at 6.20 m
R=5.58/6.20 = 0.90 . Piepesed ar 01311

R=0.31/6.20 = 0.05

Currently at 1.0 m
Proposed at 2.3 m
R=23/10=23

Uphill steps are
C‘bLWCC‘YS C‘CRcePl'fed The robot takes a step if it draws

ause s> a random number (uniform on 0.0 to 1.0),
and that number is less than or equal to R
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Target vs. proposal distributions

 The target distribution is the posterior
distribution of interest

* The proposal distribution is used to
decide which point to try next

— you have much flexibility here, and the choice affects
only the efficiency of the MCMC algorithm

— MCMC using a symmetric proposal distribution is the
Metropolis algorithm (Metropolis et al. 1953)

— Use of an asymmetric proposal distribution requires
a modification proposed by Hastings (1970), and is
known as the Metropolis-Hastings algorithm

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. J. Chem. Phys. 21:1087-1092.
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Target vs. Proposal Distributions

-
+* -
* .
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Pretend this proposal distribution

allows good mixing. What happens
if we change it?
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Trace plots

0 100 200 300 400 500 600 700 800 900 1000
0 1 P T e e
A “L _*]|I.'fl' f | "'. |l,|-. A . l‘ il / { N I'||r |
5| / | (! "
0| "White noise" appearance is a good sign
|
-15
20 Burn-in is over right about here
-25
-30 .
We started of f at a very low point
-35
-40 You can use the program Tracer to easily create this type of plot:
http://tree.bio.ed.ac.uk/software/tracer/
-45
AWTY (Are We There Yet?) is useful for investigating convergence:
-50
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http://king2.scs.fsu.edu/CEBProjects/awty/awty _start.php
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Target vs. Proposal Distributions

Proposal distributions

with smaller variance...
Disadvantage: robot takes

smaller steps, more time
required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps

© 2008 Paul O. Lewis Bayesian Phylogenetics 32



Target vs. Proposal Distributions

Proposal distributions Disadvantage: robot
with larger variance... . often proposes a step
that would take it off
a cliff, and refuses to

i move

Advantage: robot can
potentially cover a lot of
ground quickly
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Poor mixing

100 200 300 400 500 60 800 900 1000

|,|| | P |IL|'I I~ ] J—I ‘_’ l| r\|- [ | | |.“ ﬂ 1 / }HI |

\ |.| 7

Chain is spending long periods of time
“stuck"” in one place

Indicates step size too large, and most proposed
steps would take the robot "off the cliff"

Bayesian Phylogenetics
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The Hastings ratio

If robot has a greater tendency

to propose steps to the right as o S
opposed to the left when choosing - .
its next step, then the /! /\ "

acceptance ratio must ¢
counteract this
tendency.

Suppose the probability of
proposing a spot to the right
is 2/3 (making the probability

of choosing left 1/3)

In this case, the Hastings ratio
decreases the chance of accepting moves to the right by half, and
increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
© 2008 Paul O. Lewis Bayesian Phylogenetics 35



MCRobot

Windows program download from:
http://www.eeb.uconn.edu/people/plewis/software.php

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Metropolis-coupled Markov chain Monte
Carlo (MCMCMC, or MC3)

« MC? involves running several chains
simultaneously

 The cold chain is the one that counts, the
rest are heated chains

* Chain is heated by raising densities to a
power less than 1.0 (values closer to 0.0
are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data.
Pages 156-163 in Computing Science and Statistics (E. Keramidas, ed.).
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What is a heated chain?

R is the ratio of posterior probability densities.

Instead of using R in the acceptance/rejection
. . 1
decisions, a heated chain uses R1+H

Heating a chain makes the surface it explores flatter.

In MrBayes: H = “Temperature”x(The Chain’s index)
The cold chain has index 0, and the default
temperature is 0.2



Acceptance Probability for chains with Temp = 0.2

Chain
R 1 2 3 4
1.2 | 1.0000 | 1.0000 | 1.0000 | 1.0000
0.8 | 0.8000 | 0.8303 | 0.8527 | 0.8600
0.4 | 0.4000 | 0.4660 | 0.5197 | 0.5640
0.01 | 0.0100 | 0.0215 | 0.0373 | 0.0562
Acceptance Probability for chains with Temp = 0.5
Chain
R 1 2 3 4
0.8 | 0.8000 | 0.8618 | 0.8944 | 0.9146
0.4 | 0.4000 | 0.5429 | 0.6325 | 0.6931
0.01 | 0.0100 | 0.0464 | 0.1000 | 0.1585




Heated chains act as scouts for the cold
chain

small drop

short steps fall short

longer step suggested by scout
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(the following slides come directly from Paul Lewis’ lecture at the Woods
Hole Workshop on Molecular Evolution — thanks, Paul).



So, what's all this got to do with
phylogenetics?

Imagine drawing tree topologies randomly from a bin in which the
number of copies of any given topology is proportional to the
(marginal) posterior probability of that topology. Approximating
the posterior of any particular attribute of tree topologies (e.g.
existence of group AC in this case) is simply a matter of counting.

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Moving through treespace

. The Larget-Simon* move

Step 1: select 3 contiguous
branch segments (bolded)

Step 2: shrink or expand selected
segment by a random amount

Ve TIRVA
Mu - 72) Step 3: select one of 2 groups attached

to selected segment at random and prune
- (group X selected here)

m*=me

*Larget, B., and D. L.
Simon. 1999. Markov
chain monte carlo
algorithms for the
Bayesian analysis of
phylogenetic trees.
Molecular Biology and
Evolution 16: 750-759.

Step 4: reattach pruned group to selected
segment at a random point (this will change
topology of tree if reattachment occurs in

this region) This shows the free after the proposed

move has been accepted. The selected
segment has been shortened, and
group X ended up on a different
segment, thus changing the topology

See also: Holder et al.
2005. Syst. Biol. 54: 961-
965.

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Moving through parameter space

current value of

K Using K (ratio of the ftransition rate

to the transversion rate) as an
example of a model paramefter.

Y

I 1 1 1 1 1 1
I I I I I 1 T

00 10 20 30 40 50 60 Proposal distribution is uniform

a5 from -8 to k+5

new value chosen
from this interval

The "step size" of the MCMC robot
Current value of is defined by 6: a larger & means
K that the robot will attempt to make
larger jumps on average.

-
-~

0.0 1.0 2.0 3.0 4.0 5.0 6.0

F—— if new value falls in this region, excess reflected
back into valid range
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Putting it all fogether

« Start with random tree and arbitrary initial
values for branch lengths and model parameters

 Each generation consists of one of these

(chosen at random):
— Propose a new tree (e.g. Larget-Simon move) and
either accept or reject the move

— Propose (and either accept or reject) a new model
parameter value
* Every k generations, save tree topology, branch
lengths and all model parameters (i.e. sample

the chain)

* After n generations, summarize sample using
histograms, means, credible intervals, etc.

© 2008 Paul O. Lewis Bayesian Phylogenetics 43



Marginal posterior distributions

" lower = 2.907
—— 95% credible interval

upper = 3.604

© 2008 Paul O. Lewis
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meah = 3.234

Histogram created
from a sample of
1000 « values.

From: Lewis, L., and Flechtner,
V. 2002. Taxon 51: 443-451.
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I\/. Prior distributions
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Commonly-used Prior Distributions
* Fortopologies: discrete Uniform distribution

E B C C Cc
D B D C D E A D E A

1 1 1 1 1
15 15 15 15 15

A A A (o E

D B E D D E D A D C
1 1 1 1 1
15 15 15 15 15

E D C C C

B D B C B E
1 1 1 1 1
15 15 15 15 15
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Commonly-used Prior Distributions

« For proportions (e.g. pinvar): Beta(a,b) distribution

0.05 el [Elife) <o peaks at 0.5 ifa = b and
Beta(O 8,2) mean = a/(a*h) both greater than 1
004~ / Beta(1o,1oV
003 | Beta(1 2,2) /
flat when a=b=1
0.02 -
001 - Beta(1,1)
0 ‘ ‘ |
0 0.25 0.5 0.75 1
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Commonly-used Prior Distributions

* For base frequencies: Dirichlet(a,b,c,d) distribution
a— 1, b—1s, Cong, d—mp

Flat prior:
a=b=c=d=1

Informative prior:
a=b=c=d=300

(Thanks to Mark Holder for pointing out to me
that a tetrahedron could be used for plotting a
4-dimensional Dirichlet)

(stereo pairs)
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Commonly-used Prior Distributions

 For GTR model relative rates: Dirichlet(a,b,c,d,e,f)
distribution

» a— ', b—rag, Corar, d—reg, €—rcr, TorgT

» flat when a=b=c=d=e=f=1

> all relative rates nearly equal to each other if
a=b=c=d=e=f and large (e.g. 300)

» to create a vague prior that makes the rate of transitions
slightly higher than the rate of transversions, could
choose a=c=d=f=1 and b=e=2

» mean for r,c is a/s where s=a+b+c+d+e+f

> variance for r,. is a(s-a)/[s?(s+1)]

» Beta(a,b) equals Dirichlet(a,b)
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Common Priors (cont.)

* For other model parameters and branch
lengths: Gamma(a,b) distribution
— Exponential(\) equals Gamma(1, 1)
— Mean of Gamma(a,b) is axb
* mean of an Exponential(10) distribution is 0.1

— Variance of a Gamma(a,b) distribution is axb?
« variance of an Exponential(10) distribution is 0.01

Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is
the inverse of the value b used in this slide! In this case, the mean and variance would be a/b and a/b?, respectively.
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Priors for model parameters
with no upper bound

Exponential(2) = Gamma(1,%2)

0 2 4 6 8 10

© 2008 Paul O. Lewis

Exponential(0.1) = Gamma(1,10)

1.5 1
1
05 -
0 : " N—
0 2 4 6 8 10
Uniform(0,2)
2
15 b
1 boo e
0.5 fm— -
0
0 2 4 6 8 10

See chapter 18 in Felsenstein, J. (2004.
Inferring Phylogenies.Sinauer) before using.
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More About Priors

* Running on empty

* Prior as enemy

* Prior as friend

* Flat vs. informative priors
* Proper vs. improper priors
* Hierarchical models

* Empirical Bayes

© 2008 Paul O. Lewis Bayesian Phylogenetics
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0 Running on empty

#NEXUS

T . begin data;
Solid line: prior den3|ty Dimensions ntax=4 nchar=1;

estimated from MrBayes Format datatype=dna missing=?;
matrix

OUtpUt taxonl ?
Dotted line: exponential(10) taxon2 ?
taxon3 ?

?

density for comparison taxon4
en(’j;

begin mrbayes;
set autoclose=yes;
Iset rates=gamma;
prset shapepr=exponential (10.0);
mcmcp nruns=1 nchains=1 printfreq=1000;
mcmc ngen=10000000 samplefreq=1000;
end;

You can use the program Tracer to show the estimated density:
http://tree.bio.ed.ac.uk/software/tracer/

0 | | | : | o | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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More About Priors

* Prior as enemy

© 2008 Paul O. Lewis Bayesian Phylogenetics
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The choice of prior distributions can
potentially furn a good model bad!

likelihood

LRT, AIC and BIC all
say this is a great
model because it

is able to attain

prior such a high
----------------- 1 .
maximum
But the prior never likelihood
allows the parameter
SCore

out of this box, so in
actuality the model
performs very poorly

parameter value
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Internal branch length prior mean 0.1

40 Cyanophora paradoxa
39 N

selmis olivacea

38 Prevomonas angulos
preudovolvox

o cartert

0 atmosphyticus
31 Entra fimbriata

28 Klebsormidium flaccidum

29 Elebsormidium subtilissimum

30 Klebsormidium nit

23 Gonarozygon mongtas

Eens

L] L]

This is a reasonably vague
26 Zygnema peliosporum 43

25 Mesataenium Cﬂl‘dﬂf_‘fﬁ‘f'llm

Mougeo 58

19 Chas

iInternal branch length prior

13 Coleochaste orbicularis
16 Coleochaste soluta 3

I7 Coleochaete irregulari
18 Coleochae
13}

siem

lla opaca
14 Tolypella int prolifer
9 Chara connivens

12 Nitellapsis obtusa

§ Marchantia polyinor

6 Sphagnum palustre

4 Prilorum

3 Dicksonia antarctica

2 Tanous bace

ter
1 Arabidopsis thaliana
0.1
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Internal branch length prior mean 0.01

40 Cyanophora paradoxa
39 Nephroselmis olivacea
38 Preromonas angulos
37 Paulschulzia pseudovolvox
33 Volvox carteri
36 Chiamydomonas reinhardni
33 Mesostigma viride
34 Mesostigma viride NIES
32 Chlorslybus atmosphyticus
31 Entransia fimbriata
28 Elebsormidium flaccidum
29 Elebsormidium subtilissimum
30 Klebsormidium nitens
23 Gonatozygon monotaenium
21 Onychonema sp
22 Cosmocladium perissum
24 Spiragyra maxima 2495
26 Zygnema peliosporum 43
25 Mesotaenium caldariorum
27 Mougeotia sp 758
19 Chaet globosum S4G2698

20 Chaet oval

15 Coleochaste orbicularis

16 Coleochaste soluta 3241

17 Coleochaste irrsgularis

18 Coleochaste sieminsiiana

13 Nitella opaca

14 Tolypella int prolifera

9 Chara connivens

10 Lamprothamnium macropogen
11 Lychnothamnus barbanis

12 Nitellopsis obtusa

8 Marchantia polymarpha

7 Anthocerss formosae

& Sphagnum palustre

3 Huperzia lucidula

4 Psilorum nudum

3 Dicksonia antarctica
2 Taus baceata

I Avabideopsis thaliana

Bayesian

Not much effect yet...

Phylogenetics
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Internal branch length prior mean 0.001

yanaphora paradoxa
selmis olivacea

35 Volvox carteri
36 Chiamydomonas reinhardni

de
de NIES

23 Mesosti
33 Mesosrigm

ma sp
smoclad

24 Spiragyra men

26 Zygnema peliosporum 43

19 Chaert glabos
20 Chast oval
15 Coleochaete orbicularis
16 Coleoch oluta 3241
17 Coleochas

ella opaca
14 Tolypella int prolifera
9 Chara connivens
1 macropogon
thamnus barbamus
lopsis obtusa
i pha

5 Dicksonia antarctica
2 Tavus baccata

I Arabidopsis thaliana
0.1

© 2008 Paul O. Lewis

Bayesian

Notice how the internal
branch lengths are
shrinking...

(Trees in this series are
drawn to same scale

Phylogenetics
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Internal branch length prior mean 0.0001

40 Cyanaphora paradoxa

hroselmis olivacea
angulos
36 Chlamydomenas veinhardti

30 Elebsormidium nitens

23 Gonatozygon monatasy
21 Onychon

22 Cosmocl

Mougeotia s
19 Chaet globosum SAG26!
20 Chae
15 Coleochaste
16 Coleochaste soluta 3241
I7 Coleochaste irvegularis
15 Coleochaste sieminsiiana
13 Nitella apaca
14 Tolypella
9 Chara cony

oval

prolifera

10 Lamprothammnium macropogon

hamis barbaru

2 Nitellopsis obtusa
8§ Marchantia polymorph

ROCENos |

& Sphagnum
3 Huperzia lucidh

4 Peilonum m

44

_|_7 2 Tavus baceata
1 Arabidopsis thaliana

ua

antarciica
um

© 2008 Paul O. Lewis

Model compensating

for small internal branch
lengths by increasing the
external branch lengths...
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Internal branch length prior mean 0.00001

40 Cyanophora paradoxa
ophiroselmis olivacea
angulos

39N
TOMONAs

36 Chlamydomonas reinhardri
zia pseudovolvax

‘I: 20 Chaet oval

19 Chaet globosum SAG2698

Internal branch length prior
now so informative that it is
beginning to noticeably
override the likelihood...

- 10 Lamprothamnium macropogon
— 11 L s barbanis

L 12 Nitellopsis obtusa

8 Marchantia polymorpha

—— 15 Coleoche
I7 Coleochas
18 Coleocha

ceros formosae

ia anrarctica

{7 2 Taus baceata
I Arabidepsis th

sis thaliana

01
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Internal branch length prior mean 0.000001

40 Cyanophora paradoxa
39 Nephroselmis olivacea
romonas angulos

ia pseudovolvox
Volvox carteri

36 Chlamydomonas reinhardri
viride NIES
Mesosfigma
Chlorokybus atmosphyticus
23 Gonatozygen monstagni

3 Mesostigma

22 Cosmocladium
— 301
— 29 Klebsormidiu

Mougeotia sp |
—————— 24 Spirogyra mavima 2495
——————— 26 Zygnema peliosporum 43
25 Mesotaenium caldariorum

Sfimbriata

sormidium flaceidum

15 Coleochaete orbicularis
Coleochaete irregularis
16 Coleochaste soluta 3241
—— 1§ Coleachas
13

2le SIEemi ana

a opaca
I 14 Tohpella int pro
tellopsis obtusa

— 11 Lychnothamnus barbatus
|— 9 Chara connivens

— 10 Lamprothamnium macropogon

§ Marchantia pol

6 Sphagnum palusire

4 Prilotum nudum
3 Dickesonia anfarctica
———— 2 Taxus baceata
1 Avabidapsis thaliana

Bayesian

The internal branch
length prior is calling
the shots now.

Phylogenetics
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More About Priors

* Prior as friend

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Too many parameters,
too little information

H H T T T T H 7 coins flipped once

3/7 = 0.43 1 parameter model
behaves well

10 10 00 00 00 00 10 [ Pparameter model
behaves badly

Under maximum likelihood, parameter values tend to go to

extremes if there is too little information.
Priors add information and can keep models in check
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More About Priors

* Flat vs. informative priors

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Flat prior: posterior proportional to
likelihood

posterior—>f(9‘D) _ (D‘Q) (9)

<«—— constant

X f D‘9‘<—constant

x f D‘Q <« likelihood

Under a flat prior, the posterior distribution peaks at the same place as

the likelihood function, but:
 posterior mean usually differs from the maximum likelihood estimate
« flat priors are not possible for most parameters
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More About Priors

* Proper vs. improper priors

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Proper vs. improper priors

Gamma priors are proper: total area = 1.0

Uniform prior from 0 to infinity is improper:
total area =

Such (improper uniform) priors can be truncated

to make them proper, but choosing the truncation
point is arbitrary and can have a disturbingly large
effect (see Felsenstein 2004 chapter 18)

keeps going =—>
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More About Priors

 Hierarchical models

© 2008 Paul O. Lewis Bayesian Phylogenetics
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In a non-hierarchical model, all parameters
are present in the likelihood function

Exponential(mean=0.1)

| | L |

1] 1 3 ~A—4v, /3 1 3 ~A—4v,/3 1 1 ~A—4vs/3 1 1 A—4v,/3 1 3 ~A—4v:/3
Lo =4[ 343 [ +2e™ | 1 -de ™[4 -de™ | 1+ 267" ]
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Hierarchical models add hyperparameters
not present in the likelihood function

u is a hyperparameter hyperprior
governing the mean of InverseGamma(mean=1, var=10)
the edge length prior l

Exponential(mean=pn)

| | ] |

111 3 A4, /3 1 3 ~A—4v,/3 1 1 A—4vy/3 1 1 A—4v,/3 1 3 ~A—4v:/3
Lo=3[5+3e ™ | G+3e ™| d-de ™ | i e | 1 +ie ™" ]

For example, see Suchard, Weiss and Sinsheimer. 2001. MBE 18(6): 1001-1013.
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Empirical Bayes

This uses some aspects of An empirical Bayesian would use the
the data to determine some maximum likelihood estimate (MLE) of
aspects of the prior, which is the length of an average branch here
not acceptable to purists, who

prefer using the hierarchical l

approach.

Exponential(mean=MLE)

| | ] |

11 3 A4 /3 3 ~A—4v,13 1 ~A—4v3/3 1 A4V, /3 3 ~A—4v:/3
Lk_Z[Z+4e l ]':Z+4e 2 }[4—46 3 ][4—46 4 ][Z+4e 5 ]
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V. Bayesian model selection

© 2008 Paul O. Lewis Bayesian Phylogenetics
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LRT, ALIC and BIC only evaluate part of a
Bayesian model (i.e. the likelihood)

But the prior never
allows the parameter
out of this box, so in

actuality the model
performs very poorly

likelihood

LRT, AIC and BIC all
say this is a great
model because it

is able to attain
such a high
maximum
likelihood
score

© 2008 Paul O. Lewis

parameter value
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Marginal probabilities of models

D) = [ #(DI) £(6) db

Marginal probability of the data (denominator in Bayes' rule).
This is a weighted average of the likelihood, where the weights
are provided by the prior distribution.

Pr(DIM) = | f(DI0.M) F(610) do

Often left out is the fact that we are also conditioning on M, the model used.

Pr(D|M,) is comparable to Pr(D|M,) and thus the marginal probability of the

data can be used to compare the average fit of different models as long as
the data D is the same.

© 2008 Paul O. Lewis Bayesian Phylogenetics 74



Bayes Factor: 1-param. model

|

L,
Y
0.0 0.25 0.50 0.75 1.0
1
Average likelihood = (5) Ly
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Bayes Factor: 2-param. model

© 2008 Paul O. Lewis

Average likelihood = (

Bayesian Phylogenetics
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) L
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Bayes Factor is ratio of marginal
model likelihoods

1-parameter model M,: (72) L,
2-parameter model M,: (Y4) L,

Bayes Factor favors M, unless L, is at least twice
as large as L,

All other things equal, more complex models are
penalized by their extra dimensions

© 2008 Paul O. Lewis Bayesian Phylogenetics
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Marginal Likelihood of a Model

K80 model (entire 2d space)

sequence length = 1000 sites
true branch length =0.15
true kappa =4.0

JC69 model (just this 1d line)

10.0

ratio of transition rate
to transversion rate

1000 K80 wins
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Marginal Likelihood of a Model

JC69 model (just this 1d line)
0.3

K80 model (entire 2d space)

A
AOCAAN
ﬁm&aﬁmﬁmm
AN
X
A0
@ be
g O
2 R
S L 4 .04##&
= o X
nonon #: |
<5
2 &
QD ~ ©
©2a
558 i

branch length

ratio of transition rate

to transversion rate

JC69 wins

0.0

1.0

79
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Direct Method

Coin-flipping Example Sample values from the
prior. In this case, draw
proportion of heads
from Uniform(0,1)

Posterior Compute likelihood for
- - - Prior each point drawn from
the prior

N W h O O N 0 ©
[ T R N T R

probability density

—
|

Marginal likelihood is
0 01 02 03 04 05 06 07 08 09 1 the arithmetic mean
of the sampled likelihoods

0

proportion of heads

Problem: tends to underestimate marginal likelihood because few draws
from the prior will be in the highest part of the likelihood
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Harmonic Mean Method

Coin-flipping Example Sample values from the
posterior.

Compute likelihood for
each point drawn from

Posterior posterior
- - - Prior

Marginal likelihood is
the harmonic mean
of the sampled likelihoods

N W h O O N 0 ©
[ T R N T R

probability density

—
|

o

0 01 02 03 04 05 06 0.7 08 09 1

proportion of heads

Problem: tends to overestimate marginal likelihood because few draws
from the posterior will be in the lowest part of the likelihood
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Thermodynamic Integration!

« Special MCMC analysis performed in which the
distribution explored slowly changes from posterior to
prior

« Produces much more accurate? marginal likelihood

estimates:
log(marg. like.) MSE Method

-167.316 29.62 Harmonic mean
-172.783 0.01 Thermodynamic Integration
-172.743 0.00 True value

* More computation needed than for typical Bayesian
MCMC analysis

TLartillot & Phillippe. 2005. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55:195-207.

2Work in collaboration with Wangang Xie, Meng Hui Chen, Lynn Kuo and Yu Fan. In this case, model and tree
were simple enough that the marginal likelihood could be determined analytically (i.e. the true value is known).
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How would we like our phylogenetic inference
methods to behave?

|deally, the methods would return the true tree with strong
support for every grouping in the tree.

Why is this perfect performance not possible?

e systematic errors
e sampling errors



What properties are important when choosing between
methods? Assessments of support for different aspects of
the tree should be:

e interpretable

e reliable

e if we do not feel that the statements of support are always
believable, then we may prefer to be conservative

Ways to make Bayesian statements of support more
conservative:

Polytomy prior

data-size dependent priors

majority-rule consensus trees

more complex models, robust Bayesian techniques



Simulating from stars

inferred trees “expected’ support
A C
1
3
model tree B D
A C
A B l
3
B D C D
A C
1
3



Results of star tree simulations

100,000 sites simulated

Treel  Tree 2 Tree 3 Treel Tree2  Tree 3
0.3029 0.2922 0.4049 0.2990 0.3288 0.3722
0.4607 0.1362 0.4031 0.3172 0.0464 0.6364
0.6704 0.0975 0.2321 0.1584 0.7969 0.0447
0.6120 0.1852 0.2028 0.4625 0.3600 0.1775
0.3605 0.3570 0.2825 0.7077 0.0881 0.2042
0.5455 0.2505 0.2040 0.0884 0.0262 0.8854
0.4253 0.4254 0.1493 0.9551 0.0422 0.0027
0.1595 0.7465 0.0940 0.1826 0.5511 0.2663
0.4436 0.1697 0.3867 0.3043 0.4224 0.2733
0.3994 0.3904 0.2102 0.6559 0.0707 0.2734
0.1151 0.5912 0.2937 0.0073 0.9892 0.0035
0.8333 0.0951 0.0716 0.2703 0.4112 0.3185
0.8317 0.0736  0.0947




Tree geometry

A C

star tree ><
S

D

0.0 increasing central edge ——

figure courtesy of Paul Lewis



Coin-flipping analogy

p is the probability of Heads
Uniform prior, no data.
Pr(Head-biased) = 0.5

0.0

0.2 0.4

0.6 0.8 1.0



Coin-flipping analogy

X = {3 Tails, 2 Heads}
Pr(Head-biased) ~ 0.344

0.0 0.2 0.4 0.6 0.8 1.0



Coin-flipping analogy

0.0

0.2

X = {246 Tails, 254 Heads}
Pr(Head-biased) ~ 0.64

0.6 0.8 1.0



Despite the fact that p = 0.5:

Pr(Head-biased|Data) ~ Uniform(0, 1)

even as the sample size — oc.



The nature of the phenomenon

e Polytomies are given O prior probability.

e \We are asking methods to choose between several incorrect
answers.

e Not a damning flaw in Bayesian analyses (or an indication of
a bug in the software).



Behavior of Bayesian inference on trees drawn from the
prior

From ?
1.00
el
8 Evolutionary process: JC69
— Bayesian model: JC69
o 0799 ¢=100
O
2 0.50-
S
©
O 0.25-
O
| -
al
0.00

0.00 0.25 0.50 0.75 1.00

Posterior Probability



Behavior of Bayesian inference when the inference model
iIs too simple

From ?:

1.00
45 Evolutionary process: GTR+I
9 0.804 Bayesian model: JC69 °
B c=100
O  0.60- .
> X
= °
5 0.40+ Lee®e
_g o0 *®
o 0.20- i
al

0.00 . . |

0.00 0.25 0.50 0.75 1.00

Posterior Probability



Creating a more conservative analysis

Allowing for polytomies in Bayesian analyses:

e polytomies express uncertainty
e must place a prior probability on unresolved trees

e new MCMC proposals must be invented (see ?, for details)



Delete Edge Move




Effects of allowing for polytomies

. Carteria crucifera polytomies disallowed —a= | (),.999
polvtomies allowed —= | (). 99 ]
ML bootstrap ——® 0.695

 Lobochiamys segnix

Chimnpvdomonas baca
0.999 o
0.997
0.925  Tetraspora sp
: 0.999
‘{‘3908 Volvox carteri
0.999 e Bl 1.000
0.997 ‘l) m Chlamydomeonas reinhardtii
0.999 v Heterochlamydomonas lobata
0.991 J )
95 =
pon Heterochlamydomonas inaequalis
0998 i - Y8 Heterochlamydomonas rugosa
osss - data from ?
L 0.999 Carteria radiosa
0997 el
1.000 Carteria obhisa
0.999
0.991 -"’j Haematococcus sp
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0.995 - P S
1 000 v Spongiochloris spongiosa
= 0.999
0.997 Chiamydopodium vacualatum
1.000
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5
' = 0996 M
1.000 Chiamydomonas noctigama

il



Polytomy MCMC Wrap up

e Allowing unresolved trees is one way to make the Bayesian
tree inference more conservative

e Even strong priors in favor of polytomies do not give up too
much power



Different priors on the internal and external branches

? suggested using strong priors that favor short lengths for the
internal branches of the tree. This can lower the support for
potentially spurious groupings.






Ln(Likelihood)

Log-Likelihood for 3 trees
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