
Some of these slides have been borrowed from Dr.
Paul Lewis, Dr. Joe Felsenstein. Thanks!

Paul has many great tools for teaching phylogenetics at his

web site:

http://hydrodictyon.eeb.uconn.edu/people/plewis

http://hydrodictyon.eeb.uconn.edu/people/plewis


Markov chain Monte Carlo

• Simulates a walk through parameter/tree space.

• Lets us estimate posterior probabilities for any

aspect of the model

• Relies on the ratio of posterior densities between

two points



R =
Pr(Point2|Data)
Pr(Point1|Data)

R =

Pr(Point2)L(Point2)
Pr(Data)

Pr(Point1)L(Point1)
Pr(Data)

R =
Pr (Point2) L (Point2)
Pr (Point1) L (Point1)
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MCMC robot’s rules

Uphill steps are 
always accepted

Slightly downhill steps
are usually accepted

Drastic “off the cliff”
downhill steps are almost
never accepted

With these rules, it is easy to
see that the robot tends to 
stay near the tops of hills

mcmcrobot.ai
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(Actual) MCMC robot rules

Uphill steps are 
always accepted
because R > 1

Slightly downhill steps
are usually accepted
because R is near 1

Drastic “off the cliff”
downhill steps are almost
never accepted because

R is near 0

Currently at 1.0 m
Proposed at 2.3 m
R = 2.3/1.0 = 2.3

Currently at 6.20 m
Proposed at 5.58 m
R = 5.58/6.20 = 0.90 Currently at 6.20 m

Proposed at 0.31 m
R = 0.31/6.20 = 0.05

6

8

4

2

0

10

The robot takes a step if it draws 
a random number (uniform on 0.0 to 1.0),
and that number is less than or equal to R

mcmcrobot.ai
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Target vs. proposal distributions
• The target distribution is the posterior 

distribution of interest
• The proposal distribution is used to 

decide which point to try next
– you have much flexibility here, and the choice affects 

only the efficiency of the MCMC algorithm
– MCMC using a symmetric proposal distribution is the 

Metropolis algorithm (Metropolis et al. 1953)
– Use of an asymmetric proposal distribution requires 

a modification proposed by Hastings (1970), and is 
known as the Metropolis-Hastings algorithm

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. 1953. Equation of state calculations
by fast computing machines. J. Chem. Phys. 21:1087-1092.
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Target vs. Proposal Distributions

Pretend this proposal distribution
allows good mixing. What happens
if we change it?
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Trace plots

Burn-in is over right about here

We started off at a very low point

“White noise” appearance is a good sign

historyplot.ai

You can use the program Tracer to easily create this type of plot:
http://tree.bio.ed.ac.uk/software/tracer/

AWTY (Are We There Yet?) is useful for investigating convergence:
http://king2.scs.fsu.edu/CEBProjects/awty/awty_start.php
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Target vs. Proposal Distributions

Proposal distributions
with smaller variance...

Disadvantage: robot takes 
smaller steps, more time 
required to explore the
same area

Advantage: robot seldom
refuses to take proposed
steps
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Target vs. Proposal Distributions

Proposal distributions
with larger variance...

Disadvantage: robot 
often proposes a step
that would take it off
a cliff, and refuses to
move

Advantage: robot can
potentially cover a lot of 
ground quickly
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Poor mixing

Chain is spending long periods of time
“stuck” in one place

Indicates step size too large, and most proposed 
steps would take the robot “off the cliff”

slowmix.ai
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The Hastings ratio
If robot has a greater tendency 
to propose steps to the right as 
opposed to the left when choosing 
its next step, then the 
acceptance ratio must 
counteract this 
tendency.

Suppose the probability of
proposing a spot to the right 
is 2/3 (making the probability

of choosing left 1/3)

In this case, the Hastings ratio 
decreases the chance of accepting moves to the right by half, and

increases the chance of accepting moves to the left (by a factor of 2),
thus exactly compensating for the asymmetry in the proposal distribution.

Hastings, W. K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
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MCRobot
Windows program download from:

http://www.eeb.uconn.edu/people/plewis/software.php
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Metropolis-coupled Markov chain Monte 
Carlo (MCMCMC, or MC3)

• MC3 involves running several chains 
simultaneously

• The cold chain is the one that counts, the 
rest are heated chains

• Chain is heated by raising densities to a 
power less than 1.0 (values closer to 0.0 
are warmer)

Geyer, C. J. 1991. Markov chain Monte Carlo maximum likelihood for dependent data.
Pages 156-163 in Computing Science and Statistics (E. Keramidas, ed.).



What is a heated chain?

R is the ratio of posterior probability densities.

Instead of using R in the acceptance/rejection

decisions, a heated chain uses R
1

1+H

Heating a chain makes the surface it explores flatter.

In MrBayes: H = “Temperature”∗(The Chain’s index)
The cold chain has index 0, and the default

temperature is 0.2



Acceptance Probability for chains with Temp = 0.2

Chain
R 1 2 3 4

1.2 1.0000 1.0000 1.0000 1.0000
0.8 0.8000 0.8303 0.8527 0.8600
0.4 0.4000 0.4660 0.5197 0.5640

0.01 0.0100 0.0215 0.0373 0.0562

Acceptance Probability for chains with Temp = 0.5

Chain
R 1 2 3 4

0.8 0.8000 0.8618 0.8944 0.9146
0.4 0.4000 0.5429 0.6325 0.6931

0.01 0.0100 0.0464 0.1000 0.1585
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Heated chains act as scouts for the cold 
chain

stateswap.ai



(the following slides come directly from Paul Lewis’ lecture at the Woods
Hole Workshop on Molecular Evolution – thanks, Paul).
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So, what’s all this got to do with 
phylogenetics?

Imagine drawing tree topologies randomly from a bin in which the
number of copies of any given topology is proportional to the 
(marginal) posterior probability of that topology. Approximating
the posterior of any particular attribute of tree topologies (e.g. 
existence of group AC in this case) is simply a matter of counting.

ACcladeposterior.ai



© 2008 Paul O. Lewis Bayesian Phylogenetics 41

Moving through treespace
The Larget-Simon* move

*Larget, B., and D. L. 
Simon. 1999. Markov 
chain monte carlo
algorithms for the 
Bayesian analysis of 
phylogenetic trees. 
Molecular Biology and 
Evolution 16: 750-759.

See also: Holder et al. 
2005. Syst. Biol. 54: 961-
965.

lsmove.ai
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Moving through parameter space
Using κ (ratio of the transition rate 
to the transversion rate) as an 
example of a model parameter.

Proposal distribution is uniform
from κ-δ to κ+δ

The “step size” of the MCMC robot
is defined by δ: a larger δ means 
that the robot will attempt to make
larger jumps on average.

kappamove.ai
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Putting it all together
• Start with random tree and arbitrary initial

values for branch lengths and model parameters
• Each generation consists of one of these 

(chosen at random):
– Propose a new tree (e.g. Larget-Simon move) and 

either accept or reject the move
– Propose (and either accept or reject) a new model 

parameter value
• Every k generations, save tree topology, branch 

lengths and all model parameters (i.e. sample 
the chain)

• After n generations, summarize sample using
histograms, means, credible intervals, etc.
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Marginal posterior distributions
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95% credible interval
Histogram created
from a sample of 
1000 κ values.

upper = 3.604

mean = 3.234

lower = 2.907

lewisflectner.xls

From: Lewis, L., and Flechtner, 
V. 2002. Taxon 51: 443-451.
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IV. Prior distributions
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Commonly-used Prior Distributions
• For topologies: discrete Uniform distribution
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Commonly-used Prior Distributions
• For proportions (e.g. pinvar): Beta(a,b) distribution

Beta(10,10)

Beta(1,1)

Beta(1.2,2)

Beta(0.8,2)
peaks at 0.5 if a = b and 

both greater than 1

flat when a=b=1

leans left if a < b
mean = a/(a+b)
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Flat prior:
a = b = c = d = 1

Informative prior:
a = b = c = d = 300

(stereo pairs)

(Thanks to Mark Holder for pointing out to me 
that a tetrahedron could be used for plotting a 
4-dimensional Dirichlet)

dirichlet1.stereo.ai,
dirichlet300.stereo.ai

Commonly-used Prior Distributions
• For base frequencies: Dirichlet(a,b,c,d) distribution

a→πA, b→πC, c→πG, d→πT
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Commonly-used Prior Distributions

• For GTR model relative rates: Dirichlet(a,b,c,d,e,f) 
distribution

a→rAC, b→rAG, c→rAT, d→rCG, e→rCT, f→rGT
flat when a=b=c=d=e=f=1
all relative rates nearly equal to each other if 
a=b=c=d=e=f and large (e.g. 300)
to create a vague prior that makes the rate of transitions 
slightly higher than the rate of transversions, could 
choose a=c=d=f=1 and b=e=2
mean for rAC is a/s where s=a+b+c+d+e+f
variance for rAC is a(s-a)/[s2(s+1)]
Beta(a,b) equals Dirichlet(a,b)
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Common Priors (cont.)

• For other model parameters and branch 
lengths: Gamma(a,b) distribution
– Exponential(λ) equals Gamma(1, λ-1)
– Mean of Gamma(a,b) is a×b

• mean of an Exponential(10) distribution is 0.1
– Variance of a Gamma(a,b) distribution is a×b2

• variance of an Exponential(10) distribution is 0.01

Note: be aware that in many papers the Gamma distribution is defined such that the second (scale) parameter is 
the inverse of the value b used in this slide! In this case, the mean and variance would be a/b and a/b2, respectively. 
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Priors for model parameters 
with no upper bound
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zerotoinfinitypriors.xls

See chapter 18 in Felsenstein, J. (2004. 
Inferring Phylogenies.Sinauer) before using.
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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#NEXUS

begin data;
Dimensions ntax=4 nchar=1;
Format datatype=dna missing=?;
matrix

taxon1 ?
taxon2 ?
taxon3 ?
taxon4 ?

;
end;

begin mrbayes;
set autoclose=yes;
lset rates=gamma;
prset shapepr=exponential(10.0);
mcmcp nruns=1 nchains=1 printfreq=1000;
mcmc ngen=10000000 samplefreq=1000;

end;

Running on empty

You can use the program Tracer to show the estimated density:
http://tree.bio.ed.ac.uk/software/tracer/

nodata/nodata.xls

Solid line: prior density
estimated from MrBayes
output
Dotted line: exponential(10)
density for comparison
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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The choice of prior distributions can 
potentially turn a good model bad!

LRT, AIC and BIC all
say this is a great
model because it

is able to attain
such a high 

maximum 
likelihood

score
But the prior never

allows the parameter 
out of this box, so in 
actuality the model

performs very poorly

hurtful_prior.ai
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Internal branch length prior mean 0.1

This is a reasonably vague
internal branch length prior



© 2008 Paul O. Lewis Bayesian Phylogenetics 57

Internal branch length prior mean 0.01

Not much effect yet...
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Notice how the internal
branch lengths are
shrinking...

(Trees in this series are 
drawn to same scale)

Internal branch length prior mean 0.001
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Internal branch length prior mean 0.0001

Model compensating
for small internal branch
lengths by increasing the
external branch lengths...
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Internal branch length prior mean 0.00001

Internal branch length prior
now so informative that it is
beginning to noticeably
override the likelihood...
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Internal branch length prior mean 0.000001

The internal branch
length prior is calling
the shots now.
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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H H T T T T H

1.01.0 1.0 0.0 0.0 0.0 0.0 7 parameter model 
behaves badly

1 parameter model 
behaves well3/7 = 0.43

Under maximum likelihood, parameter values tend to go to
extremes if there is too little information. 
Priors add information and can keep models in check

Too many parameters,
too little information

7 coins flipped once
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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Flat prior: posterior proportional to 
likelihood

posterior
constant

Under a flat prior, the posterior distribution peaks at the same place as 
the likelihood function, but:
• posterior mean usually differs from the maximum likelihood estimate
• flat priors are not possible for most parameters

constant

likelihood
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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Proper vs. improper priors
Gamma priors are proper: total area = 1.0

Uniform prior from 0 to infinity is improper: 
total area = ∞

Such (improper uniform) priors can be truncated
to make them proper, but choosing the truncation 
point is arbitrary and can have a disturbingly large 
effect (see Felsenstein 2004 chapter 18)

keeps going 
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More About Priors
• Running on empty
• Prior as enemy
• Prior as friend
• Flat vs. informative priors
• Proper vs. improper priors
• Hierarchical models
• Empirical Bayes
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3 51 2 44 /3 4 /34 /3 4 /3 4 /33 3 31 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4kL e e e e eν νν ν ν− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

A

A

A T

C

C
ν2

ν1

ν3

ν4

ν5

Exponential(mean=0.1)

In a non-hierarchical model, all parameters
are present in the likelihood function
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μ is a hyperparameter
governing the mean of
the edge length prior

3 51 2 44 /3 4 /34 /3 4 /3 4 /33 3 31 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4kL e e e e eν νν ν ν− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Exponential(mean=μ)

Hierarchical models add hyperparameters
not present in the likelihood function

InverseGamma(mean=1, var=10)

For example, see Suchard, Weiss and Sinsheimer. 2001. MBE 18(6): 1001-1013.

hyperprior
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Empirical Bayes

3 51 2 44 /3 4 /34 /3 4 /3 4 /33 3 31 1 1 1 1 1 1 1
4 4 4 4 4 4 4 4 4 4 4kL e e e e eν νν ν ν− −− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + − − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

Exponential(mean=MLE)

An empirical Bayesian would use the 
maximum likelihood estimate (MLE) of
the length of an average branch here 

This uses some aspects of
the data to determine some
aspects of the prior, which is
not acceptable to purists, who 
prefer using the hierarchical
approach.
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V. Bayesian model selection



© 2008 Paul O. Lewis Bayesian Phylogenetics 73

LRT, AIC and BIC only evaluate part of a 
Bayesian model (i.e. the likelihood)

LRT, AIC and BIC all
say this is a great
model because it

is able to attain
such a high 

maximum 
likelihood

score
But the prior never

allows the parameter 
out of this box, so in 
actuality the model

performs very poorly

hurtful_prior.ai
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Marginal probabilities of models

Marginal probability of the data (denominator in Bayes' rule).
This is a weighted average of the likelihood, where the weights

are provided by the prior distribution.

Often left out is the fact that we are also conditioning on M, the model used.
Pr(D|M1) is comparable to Pr(D|M2) and thus the marginal probability of the
data can be used to compare the average fit of different models as long as 

the data D is the same.
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Average likelihood =

Bayes Factor: 1-param. model
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Average likelihood =

Bayes Factor: 2-param. model
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Bayes Factor is ratio of marginal 
model likelihoods

1-parameter model M0: (½) L0

2-parameter model M1: (¼) L1

Bayes Factor favors M0 unless L1 is at least  twice
as large as L0

All other things equal, more complex models are 
penalized by their extra dimensions
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Marginal Likelihood of a Model

JC69 model (just this 1d line)

K80 model (entire 2d space)
sequence length = 1000 sites
true branch length = 0.15
true kappa = 4.0

K80 wins
JcvsK2P/JCvsK2P.py
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Marginal Likelihood of a Model

sequence length = 1000 sites
true branch length = 0.15
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins
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Direct Method
Coin-flipping Example
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Sample values from the 
prior. In this case, draw
proportion of heads
from Uniform(0,1)

Compute likelihood for
each point drawn from
the prior

Marginal likelihood is
the arithmetic mean
of the sampled likelihoods

Problem: tends to underestimate marginal likelihood because few draws
from the prior will be in the highest part of the likelihood
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Harmonic Mean Method
Coin-flipping Example
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Sample values from the 
posterior.

Compute likelihood for
each point drawn from
posterior

Marginal likelihood is
the harmonic mean
of the sampled likelihoods

Problem: tends to overestimate marginal likelihood because few draws
from the posterior will be in the lowest part of the likelihood
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Thermodynamic Integration1

• Special MCMC analysis performed in which the 
distribution explored slowly changes from posterior to 
prior

• Produces much more accurate2 marginal likelihood 
estimates:

log(marg. like.) MSE Method

-167.316 29.62 Harmonic mean
-172.783 0.01 Thermodynamic Integration
-172.743 0.00 True value

• More computation needed than for typical Bayesian 
MCMC analysis

1Lartillot & Phillippe. 2005. Computing Bayes factors using thermodynamic integration. Syst. Biol. 55:195-207.

2Work in collaboration with Wangang Xie, Meng Hui Chen, Lynn Kuo and Yu Fan. In this case, model and tree
were simple enough that the marginal likelihood could be determined analytically (i.e. the true value is known).



How would we like our phylogenetic inference

methods to behave?

Ideally, the methods would return the true tree with strong

support for every grouping in the tree.

Why is this perfect performance not possible?

• systematic errors

• sampling errors



What properties are important when choosing between

methods? Assessments of support for different aspects of

the tree should be:

• interpretable

• reliable

• if we do not feel that the statements of support are always

believable, then we may prefer to be conservative

Ways to make Bayesian statements of support more

conservative:

• Polytomy prior

• data-size dependent priors

• majority-rule consensus trees

• more complex models, robust Bayesian techniques



Simulating from stars
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Results of star tree simulations

100,000 sites simulated

Tree 1 Tree 2 Tree 3 Tree 1 Tree 2 Tree 3
0.3029 0.2922 0.4049 0.2990 0.3288 0.3722
0.4607 0.1362 0.4031 0.3172 0.0464 0.6364
0.6704 0.0975 0.2321 0.1584 0.7969 0.0447
0.6120 0.1852 0.2028 0.4625 0.3600 0.1775
0.3605 0.3570 0.2825 0.7077 0.0881 0.2042
0.5455 0.2505 0.2040 0.0884 0.0262 0.8854
0.4253 0.4254 0.1493 0.9551 0.0422 0.0027
0.1595 0.7465 0.0940 0.1826 0.5511 0.2663
0.4436 0.1697 0.3867 0.3043 0.4224 0.2733
0.3994 0.3904 0.2102 0.6559 0.0707 0.2734
0.1151 0.5912 0.2937 0.0073 0.9892 0.0035
0.8333 0.0951 0.0716 0.2703 0.4112 0.3185
0.8317 0.0736 0.0947



Tree geometry

figure courtesy of Paul Lewis



Coin-flipping analogy

0.0 0.2 0.4 0.6 0.8 1.0

p

p is the probability of Heads
Uniform prior, no data.
Pr(Head-biased) = 0.5



Coin-flipping analogy

0.0 0.2 0.4 0.6 0.8 1.0

p

X = {3 Tails, 2 Heads}
Pr(Head-biased) ≈ 0.344



Coin-flipping analogy

0.0 0.2 0.4 0.6 0.8 1.0

p

X = {246 Tails, 254 Heads}
Pr(Head-biased) ≈ 0.64



Despite the fact that p = 0.5:

Pr(Head-biased|Data) ∼ Uniform(0, 1)

even as the sample size →∞.



The nature of the phenomenon

• Polytomies are given 0 prior probability.

• We are asking methods to choose between several incorrect

answers.

• Not a damning flaw in Bayesian analyses (or an indication of

a bug in the software).



Behavior of Bayesian inference on trees drawn from the
prior

From ?:
912 SYSTEMATIC BIOLOGY VOL. 53

FIGURE 5. A comparison of posterior probabilities and nonparametric bootstrap proportions. The top two graphs show the relationship
between posterior probabilities and the probability that the tree is correct. The bottom two graphs show the relationship between bootstrap
values and the probability that the tree is correct.

probabilities. The basic problem in earlier studies is that
they did not treat the model parameters as random vari-
ables. The Bayesian method treats all parameters of a
model as random variables, with a prior probability dis-
tribution on each. Earlier studies had fixed the tree (and
other aspects of the phylogenetic model), and therefore
failed to satisfy the assumptions of the Bayesian method.
Here, we simulated data sets on trees that were first
drawn from a prior probability distribution. In this re-
spect, our simulation satisfied the assumptions of the
Bayesian method.

The results of this study suggest that careful attention
must be paid to the model used in a Bayesian analy-
sis. Specifically, the model should be as complex as pos-
sible while still allowing parameters to be identified.
There are a number of strategies that can be currently
used, such as partitioning data and modelling the evo-
lutionary process separately in each. This can be done
using MrBayes v3.0 (Huelsenbeck and Ronquist, 2001).
The idea is to increase the number of trees visited by
the Markov chain Monte Carlo method, and keep the
Bayesian method from placing too much probability on
too few trees (Castoe et al., 2004; Nylander et al., 2004;
Lin et al., 2004). Unfortunately, there are limits to this
approach. The universe of phylogenetic models is cur-
rently quite small and the types of evolutionary pro-
cesses that are accommodated is limited. One can apply

the current models to small parts of a data matrix, but
if the model fails to capture important evolutionary pro-
cesses, then it is not clear how much improvement there
will be in the estimate of phylogeny or the assessment
of variability in the phylogeny in the Bayesian method.
What is also needed is an expansion of the universe of
possible models. Specifically, virtually all of the mod-
els currently used assume that the evolutionary process
is homogenous over the entire phylogenetic history of
a group. This assumption can be relaxed. For example,
the covarion-like model (Tuffley and Steel, 1997) relaxes
the assumption that the rate of substitution at a site is
constant over time. It might also be possible to relax the
assumption that nucleotide composition is constant over
time. For example, in a Bayesian framework, one might
assume that nucleotide composition changes discretely,
and use Markov chain Monte Carlo to integrate over dif-
ferent histories of nucleotide composition change (e.g.,
in a manner similar to Huelsenbeck et al., 2000). Adop-
tion of this strategy—using more complex models cho-
sen from a more extensive pool of candidate phyloge-
netic models—does not necessarily mean abandoning
formal model choice. It may still be possible to choose
a model that best explains the alignment without intro-
ducing superfluous parameters using Bayesian model
choice (e.g., Huelsenbeck et al., 2004) or information cri-
teria (see Burnham and Anderson, 1998).



Behavior of Bayesian inference when the inference model
is too simple
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FIGURE 5. A comparison of posterior probabilities and nonparametric bootstrap proportions. The top two graphs show the relationship
between posterior probabilities and the probability that the tree is correct. The bottom two graphs show the relationship between bootstrap
values and the probability that the tree is correct.

probabilities. The basic problem in earlier studies is that
they did not treat the model parameters as random vari-
ables. The Bayesian method treats all parameters of a
model as random variables, with a prior probability dis-
tribution on each. Earlier studies had fixed the tree (and
other aspects of the phylogenetic model), and therefore
failed to satisfy the assumptions of the Bayesian method.
Here, we simulated data sets on trees that were first
drawn from a prior probability distribution. In this re-
spect, our simulation satisfied the assumptions of the
Bayesian method.

The results of this study suggest that careful attention
must be paid to the model used in a Bayesian analy-
sis. Specifically, the model should be as complex as pos-
sible while still allowing parameters to be identified.
There are a number of strategies that can be currently
used, such as partitioning data and modelling the evo-
lutionary process separately in each. This can be done
using MrBayes v3.0 (Huelsenbeck and Ronquist, 2001).
The idea is to increase the number of trees visited by
the Markov chain Monte Carlo method, and keep the
Bayesian method from placing too much probability on
too few trees (Castoe et al., 2004; Nylander et al., 2004;
Lin et al., 2004). Unfortunately, there are limits to this
approach. The universe of phylogenetic models is cur-
rently quite small and the types of evolutionary pro-
cesses that are accommodated is limited. One can apply

the current models to small parts of a data matrix, but
if the model fails to capture important evolutionary pro-
cesses, then it is not clear how much improvement there
will be in the estimate of phylogeny or the assessment
of variability in the phylogeny in the Bayesian method.
What is also needed is an expansion of the universe of
possible models. Specifically, virtually all of the mod-
els currently used assume that the evolutionary process
is homogenous over the entire phylogenetic history of
a group. This assumption can be relaxed. For example,
the covarion-like model (Tuffley and Steel, 1997) relaxes
the assumption that the rate of substitution at a site is
constant over time. It might also be possible to relax the
assumption that nucleotide composition is constant over
time. For example, in a Bayesian framework, one might
assume that nucleotide composition changes discretely,
and use Markov chain Monte Carlo to integrate over dif-
ferent histories of nucleotide composition change (e.g.,
in a manner similar to Huelsenbeck et al., 2000). Adop-
tion of this strategy—using more complex models cho-
sen from a more extensive pool of candidate phyloge-
netic models—does not necessarily mean abandoning
formal model choice. It may still be possible to choose
a model that best explains the alignment without intro-
ducing superfluous parameters using Bayesian model
choice (e.g., Huelsenbeck et al., 2004) or information cri-
teria (see Burnham and Anderson, 1998).



Creating a more conservative analysis

Allowing for polytomies in Bayesian analyses:

• polytomies express uncertainty

• must place a prior probability on unresolved trees

• new MCMC proposals must be invented (see ?, for details)
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Effects of allowing for polytomies

data from ?



Polytomy MCMC Wrap up

• Allowing unresolved trees is one way to make the Bayesian

tree inference more conservative

• Even strong priors in favor of polytomies do not give up too

much power



Different priors on the internal and external branches

? suggested using strong priors that favor short lengths for the

internal branches of the tree. This can lower the support for

potentially spurious groupings.
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