
Another toy example

You tag 1000 territorial animals with transmitting tags.

Every month you survey the area. Assume that you can detect every tag
attached to a living organism.

You know (from other studies) that the probability of a tag falling off are:
0.10 in the first month, 0.15 in the second month, 0.2 in the third month,
and 0.25 for every month after that.

Can you estimate the per-month probability of death?



You have studied bill width in a population of finches for many years.

You have a standardization technique that converts the widths to
standardized widths that follow a Normal distribution with µ = 0 and
σ = 1. The standardization relies on your historical studies of the finches.

There is a drought, and you want to know if the mean width has changed.

Indiv. standardized bill width
1 0.01009121
2 3.63415088
3 -1.40851589
4 3.70573177
5 -0.94145782



Numerical optimization – minimizing a function by

evaluating it at many trial points.

Main points:

1. optimizers can fail to find the global optimum:

(a) multiple modes are a problem.

(b) result is often starting point dependent.

2. limited precision in computers → rounding error,

which complicates termination criteria.



Numerical optimization – practical recommendations.

1. Try multiple starting points.

2. Try multiple optimization algorithms.

3. Reparameterization can help

4. Using derivatives from finite differences can be

surprisingly effective – consider BFGS even if you

can’t calculate the gradient.



Summary of LRT example:

• A test based on the likelihood ratio test statistic is the most powerful
hypothesis test.

• If we do not know the value of a parameter that occurs in the likelihood
equation, we can estimate it.

• Even if we don’t care about the parameter (e.g. σ in our original
question); its value can affect our hypothesis tests.

• When the likelihood around the MLE looks “normalish” (not at a
boundary and not a weird likelihood function), then the the χ2

k

distribution does a nice job of describing the null distribution of the
LRT statistic for nested models.



Alternative forms of model selection

The following methods do not assume that models are nested:

minimizing the Akaike Information Criterion:

AIC(M |X) = 2k − 2 lnL(θ̂|X,M)

Bayes Factors: B01 is the Bayes factor in favor of model 0 over model 1:

B01 =
P(X|M0)

P(X|M1)

This is just a likelihood ratio, but it is not the likelihood evaluated at it
maximum, rather it is:

P(X|M0) =

∫
P(X|θ0)P(θ0)dθ0) (1)

where θ0 is the set of parameters in model 0.



Bayes factors can be approximated using differences in:

BIC(M |X) = 2k ln(n)− 2 lnL(θ̂|X,M)

Better approximations of the Bayes factor are available, but they are usually
much more expensive.



Parametric bootstrapping

1. Estimate θ̂
2. Estimate θ̂0 – the value of θ that agrees with the null, which has the

highest likelihood.
3. Calculate Λ = logL(θ̂)− logL(θ̂0), the observed LR test statistic.
4. Simulate M data sets from θ̂0. For each replicate i:S

(a) Estimate θ̂i
(b) Estimate θ̂0i
(c) Calculate Λi = logL(θ̂i)− logL(θ̂0i), the observed LR test statistic.

The proportion of the M simulations for which Λi ≥ Λ approximates the
P -value.



You suspect that a population of big horn sheep are made up of two classes
of males based on their fighting ability: Strong and Weak. The proportion
of strong individuals is unknown.
Experiment:

• You randomly select 10 pairs of males from a large population.
• For each pair you randomly assign one of them the ID 0 and the other

the ID 1.
• You record the # of winner from 2 contests.

Model:

• If two individuals within the same class fight, you expect either outcome
to be equally likely.
• If a Strong is paired against a Weak then you expect that the probability

that the stronger one wins with some probability, w.
• w is assumed to be the same for every pairing of Strong versus Weak

and the same for every fight within such a pairing.



winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

What can we say about w?



winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

X

x1 = 1 x11 = 1
x2 = 1 x12 = 0
x3 = 0 x13 = 1
x4 = 1 x14 = 1
x5 = 0 x15 = 0
x6 = 0 x16 = 1
x7 = 1 x17 = 1
x8 = 0 x18 = 0
x9 = 1 x19 = 0
x10 = 1 x20 = 1

L(w) =

20∏
i=1

P(xi|w)



winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

X

x1 = 1 x11 = 1
x2 = 1 x12 = 0
x3 = 0 x13 = 1
x4 = 1 x14 = 1
x5 = 0 x15 = 0
x6 = 0 x16 = 1
x7 = 1 x17 = 1
x8 = 0 x18 = 0
x9 = 1 x19 = 0
x10 = 1 x20 = 1

P(x11 = 1|x1 = 1, w) 6= P(x11 = 1 | x1 = 0, w)

L(w) =

10∏
i=1

P(xi|w)P(x10+i|xi, w)



winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

Y

y1 = (1, 1)
y2 = (1, 0)
y3 = (0, 1)
y4 = (1, 1)
y5 = (0, 0)
y6 = (0, 1)
y7 = (1, 1)
y8 = (0, 0)
y9 = (1, 0)
y10 = (1, 1)

L(w) =

10∏
i=1

P(yi|w)



0 = same ram wins both bouts
1 = different rams win

winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

Z

z1 = 0
z2 = 1
z3 = 1
z4 = 0
z5 = 0
z6 = 1
z7 = 0
z8 = 0
z9 = 1
z10 = 0

L(w) =

10∏
i=1

P(zi|w)



winner
Pair # fight 1 fight 2

1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
8 0 0
9 1 0

10 1 1

Z

z1 = 0
z2 = 1
z3 = 1
z4 = 0
z5 = 0
z6 = 1
z7 = 0
z8 = 0
z9 = 1
z10 = 0

L(w) =

10∏
i=1

P(zi|w)

A =
10∑
i=1

zi = 4

L(w) = P(Z = 0|w)(n−A)P(Z = 1|w)A


