Another toy example

You tag 1000 territorial animals with transmitting tags.

Every month you survey the area. Assume that you can detect every tag
attached to a living organism.

You know (from other studies) that the probability of a tag falling off are:
0.10 in the first month, 0.15 in the second month, 0.2 in the third month,
and 0.25 for every month after that.

Can you estimate the per-month probability of death?



You have studied bill width in a population of finches for many years.

You have a standardization technique that converts the widths to
standardized widths that follow a Normal distribution with © = 0 and
o = 1. The standardization relies on your historical studies of the finches.

There is a drought, and you want to know if the mean width has changed.

Indiv. | standardized bill width

1 0.01009121
2 3.63415088
3 -1.40851589
4 3.70573177
5 -0.94145782



Numerical optimization — minimizing a function by
evaluating it at many trial points.

Main points:

1. optimizers can fail to find the global optimum:
(a) multiple modes are a problem.
(b) result is often starting point dependent.

2. limited precision in computers — rounding error,
which complicates termination criteria.



Numerical optimization — practical recommendations.

1. Try multiple starting points.

2. Try multiple optimization algorithms.

3. Reparameterization can help

4. Using derivatives from finite differences can be
surprisingly effective — consider BFGS even if you
can't calculate the gradient.




Summary of LRT example:

e A test based on the likelihood ratio test statistic is the most powerful
hypothesis test.

e |f we do not know the value of a parameter that occurs in the likelihood
equation, we can estimate It.

e Even if we don't care about the parameter (e.g. o in our original
question); its value can affect our hypothesis tests.

e When the likelihood around the MLE looks “normalish” (not at a
boundary and not a weird likelihood function), then the the x3
distribution does a nice job of describing the null distribution of the
LRT statistic for nested models.



Alternative forms of model selection

The following methods do not assume that models are nested:

minimizing the Akaike Information Criterion:
AIC(M|X) = 2k — 2In L(A| X, M)
Bayes Factors: B is the Bayes factor in favor of model 0 over model 1:

P(X]| M)
P(X|M;)

By =

This is just a likelihood ratio, but it is not the likelihood evaluated at it
maximum, rather it is:

P(X|Mo) = / P (X [60)P(60)d6,) (1)

where 6 is the set of parameters in model 0.



Bayes factors can be approximated using differences in:

BIC(M|X) = 2kIn(n) — 2In L(| X, M)

Better approximations of the Bayes factor are available, but they are usually
much more expensive.



Parametric bootstrapping

1. Estimate@i
2. Estimate 6y — the value of 6 that agrees with the null, which has the

highest likelihood. )
3. Calculate A =log L(#) — log L(6o), the observed LR test statistic.

4. Simulate M data sets from 6. For each replicate i:S
(a) Estimate 6;
(b) Estimate 6y,
(c) Calculate A; = log L(6;) — log L(y;), the observed LR test statistic.

The proportion of the M simulations for which A; > A approximates the
P-value.



You suspect that a population of big horn sheep are made up of two classes
of males based on their fighting ability: Strong and Weak. The proportion
of strong individuals is unknown.

Experiment:

e You randomly select 10 pairs of males from a large population.
e For each pair you randomly assign one of them the ID 0 and the other

the ID 1.
e You record the # of winner from 2 contests.

Model:

e |f two individuals within the same class fight, you expect either outcome
to be equally likely.

e |f a Strong is paired against a Weak then you expect that the probability
that the stronger one wins with some probability, w.

e w is assumed to be the same for every pairing of Strong versus Weak
and the same for every fight within such a pairing.



winner
Pair # | fight 1 | fight 2
1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
7 1 1
3 0 0
9 1 0
10 1 1

What can we say about w?
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winner X
Pair # | fight 1 | fight 2

1 1 1 r1 — 1 11 — 1
2 1 0 Xy = x12 =0
3 0 1 Xr3 — 0 13 — 1
4 1 1 Ty = L14 — 1
5 0 0 Ty — 15 —

§) 0 1 LT — 0 r1e — 1
{ 1 1 L7 = 1 L7 = 1
8 0 0 rg=0 x18=0
9 1 0 Ty = r19 =0
10 1 1 ri0=1 x20=1

IP(ZCH = 1‘1’1 = 1,?1}) # P(Qﬁll =1 | 1 = O,’UJ)

L(w) = HP(%WW(%OH\%» w)
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L(w) = | [ P(yilw)




0 = same ram wins both bouts

1 = different rams win

winner
Pair # | fight 1 | fight 2
1 1 1
2 1 0
3 0 1
4 1 1
5 0 0
6 0 1
I 1 1
3 0 0
9 1 0
10 1 1

L(w) = HIP’(zi\w)
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winner 7
Pair # | fight 1 | fight 2

—t

1 T | 2=

29 =

23:1

4 =

5 =

26 —

Z7:O

2820

OO N[OOI B WIDN

29 —

R~ ORI OlOolr Ol
= OO R OolRr RO

21020

=
o

L@Q:IPMMw)

10
=1

L(w) =P(Z = 0|w)"YP(Z = 1|w)?



