
Thus far we have emphasized:

1. Writing the likelihood equation. L(θ) = P(X|θ).
2. Finding the parameter values that maximize the likelihood. Usually by:

(a) Converting to the log-likelihood equation: lnL(θ) rather than L(θ).
(b) Taking the derivative of lnL(θ) with respect to every parameter (every element of the

parameter vector θ.
(c) Setting each derivative of the log-likelihood to be equal to zero.
(d) Solving this system equations for the set parameter values, θ̂. These parameter values

will be the MLEs1

(e) Calculating the lnL(θ̂)
3. If we want to do hypothesis testing, then we:

(a) Repeating the steps in bullet point #2, while enforcing any constraints made by the null
hypothesis (resulting in θ̂0 rather than θ̂).

(b) Determine a likelihood ratio test statistic, Λ, by comparing the global ML solution to

the ML solution under the null: Λ = 2
[
lnL(θ̂0)− lnL(θ̂)

]
(c) Evaluating the significance of Λ by either:

i. assuming a χ2 distribution with the appropriate degrees of freedom, or
ii. using a computer to simulate lots of realizations of the data sets under the null

hypothesis, and estimating the Λ for each one of the realizations.

Step #1 above is unavoidable in likelihood-based inference, we have to be able to articulate the
probability of the data given a model and set of parameter values. Sometimes we can’t write the
equation out in any compact form, we can just articulate its fundamental structure in a fairly
abstract way (e.g. using summations and functions that we define for common combinations of
parameters).

Step #2b can be tricky. Even if we can accomplish that, we may not be able to do #2d. Sometimes
both of these steps are technically possible, but inordinately difficult.

Fortunately we can use numerical optimization techniques to try to find a set of parameter values
that approximates θ̂.

Optimization is a entire field that is distinct from likelihood - indeed it is a major branch of applied
mathematics. Traditionally optimization routines are discussed in the context of minimizing a
function. We will simply minimize the negative-log-likelihood, to find the parameter values that
maximize the likelihood.

Numerical optimization refers to the use of techniques that work on the numerical values of the
problem rather than relying on solving the system with all of the variable treated analytically. In
general the methods that we will talk about:

1. start from an initial guess,
2. investigate some points nearby in parameter space,

1We have to check the second derivatives to make sure that they are maxima not minima, and we may have to
evaluate the endpoints of the range of parameters values, too.

1



3. repeat step #2 until the score (the log-likelihood in our case) stops changing much.

That description is too vague to be very helpful, but even so we can see that the methods:

1. can be starting-point dependent.
2. require a termination condition. Note that computers cannot store real numbers to arbitrary

precision, so rounding error is an issue that we will have to confront. Most numerical methods
have a “tolerance” (often referred to as ‘tol’ in software) that represents the smallest value
that is considered notable when we consider changes in the objective function. Improvements
in the log-likelihood of less than ‘tol’ will not be enough to keep the algorithms repeating
their computation. tol will often be set to around 10−8 to avoid slow optimization caused by
rounding error.

Designers of numerical optimization routines want to find θ0 such that f(θ0) < f(θ) for all values
of θ that are relevant. In particular, they try to design algorithms that do this that:

1. Evaluate the function f as few times as possible (because the function can be computationally
expensive);

2. Work under a wide variety of circumstances (e.g. not just on well-behaved normal-like sur-
faces);

3. Require the user to supply as little information about the function as possible.

These criteria are in conflict. In general an algorithm that requires second derivatives, f ′′ will be
faster than one that requires only first derivatives, f ′. And functions that don’t use information
from derivatives at all will be the slowest variety. But the need to supply first and second derivatives
constrains the type of problems that we can use with an algorithm.

Single-variable optimization

These techniques are used when:

1. there is only one parameter to optimize, or
2. You have a multiparameter problem, but you already have a current point in parameter space,
θi, and you have already picked a direction to move in, ∆θ. You would like to try points:

θi+1 = θi + α∆θ

In this case we want to find the optimal value of α (or the “step-size”), so we can view this
a single-parameter optimization of α.

Parabolic interpolation

Imagine we have three points, (x1, y1), (x2, y2) and (x3, y3). Furthermore imagine that these points
do not form a straight line.

2



In many problems, the shape near the minimum resembles a parabola (think of the log-likelihood
of the normal as a function of µ).

Recall that the formula for a parabola is:

ax2 + bx+ c = y.

Thus, we have

ax21 + bx1 + c = y1

ax22 + bx2 + c = y2

ax23 + bx3 + c = y3

and these three equations let us solve for a, b and c.

a =
x2y1 − x3y1 − x1y2 + x3y2 + x1y3 − x2y3

(x2 − x1)(x2 − x3)(x3 − x1)

b =
x22y1 − x23y1 − x21y2 + x23y2 + x21y3 − x22y3

(x2 − x1)(x1 − x3)(x2 − x3)

c =
−x22x3y1 + x2x

2
3y1 + x21x3y2 − x1x23y2 − x21x2y3 + x1x

2
2y3

(x3 − x2)(x21 − x1x2 − x1x3 + x2x3)

The maximum/minimum of a parabola occurs when x = b
2a , so the extreme point should be at:

x4 =
x23(−y1 + y2) + x22(y1 − y3) + x21(−y2 + y3)

2(x3(y1 − y2) + x1(y2 − y3) + x2(−y1 + y3))

In this way we can predict a new value of x form the preceding 3. Then we can use the x2, x3 and
x4 to construct a new triple of points so that we can continue another round (as long f(x4) more
than ‘tol’ better than any of the other f(x) values)

Demo of successive parabolic interpolation

Golden section search

If x1 and x2 bracket the minima then you can put x3 in 38.2% of the way in between them (0.382,
and 0.618 are the distances to x1 and x2, if we call the distance from x1 to x2 “one unit”). We’ll
assume that y3 < y2 and y3 < y1, so that x3 is the reason that we known the interval brackets the
minimum point.

We can continue to subdivide the larger interval remaining (and dropping more extreme points to
narrow our bracketing) until we terminate.

This golden section search is more robust than the parabolic interpolation, but typically scores
more points (unless the function is not close to quadratic).

3

http://www.cse.illinois.edu/iem/optimization/SuccessiveParabolic/


Brent’s method

Requires a bracketing, but uses parabolic interpolation when it seems to be working well (and falls
back on Golden section search when it does not seem to be working well).

Brent’s method is the basis of optimize in R.

In Python with SciPy, we use from scipy import optimize; at the top of the script. See
optimize.brent for Brent’s method, and optimize.golden for the golden section search. optimize.bracket
can be used to find an interval that brackets a local optimum.

0.1 Nelder-Mead

See the nice discussion on Wikipedia’s Nelder-Mead page

If you have k-dimensions, try out k + 1 points and sort them by score: x1, x2, . . . xk+1.

Since xk+1 is our worst point, we’ll try to replace it.

Let x0 be the mean of the points x1 through xk.

Let ∆xk+1 be the displacement from xk+1 to x0.

Algorithm 1 Nelder-Mead Simplex method

1: xr is a point that is the mirror image of xk+1 “reflected” around x0 (so xr = x0 + ∆xk+1)
2: if f(xr) < f(x1) then
3: xe is another ∆xk+1 beyond xr in the same “direction” (so xe = x0 + 2∆xk+1)
4: if f(xe) < f(xr) then
5: xk+1 = xe
6: else
7: xk+1 = xr
8: end if
9: else if f(xr) < f(xk) then

10: xk+1 = xr
11: else
12: xc is halfway between xk+1 and x0 (so xr = xk+1 + 0.5∆xk+1)
13: if f(xc) < f(xk+1) then
14: xk+1 = xc
15: else
16: Keep x0 and halve the distance between all other points and x0
17: end if
18: end if

In R this is done with optim(par, fn, method="Nelder-Mead". . .).

4

http://en.wikipedia.org/wiki/Nelder%E2%80%93Mead_method


In SciPy, we use we use from scipy import optimize; at the top of the script and then optimize.fmin

Quasi-Newton methods

We can approximate the behavior of a function around a point by using a Taylor’s series. Specif-
ically, for approximating the value of a function at point x given its value and derivatives at a
nearby point, x0:

g(x) ≈ g(x0) +
1

1!

(
dg(x0)

dx

)
(x− x0) +

1

2!

(
d2g(x0)

dx2

)
(x− x0)2 + . . .+

1

n!

(
dng(x0)

dxn

)
(x− x0)n

If we just use the first two derivatives in our approximation then we get a parabolic function:

g(x) ≈ g(x0) +

(
dg(x0)

dx

)
(x− x0) +

1

2

(
d2g(x0)

dx2

)
(x− x0)2

Recall that the general formula for a parabola is

g(x) = ax2 + bx+ c

and, for a parabola

dg(x)

dx
= 2ax+ b

with a maximum/minimum at:

x =
b

2a

For the case of the Taylor series approximation of our function we see that, our independent variable
is the change in x (which is x− x0), and

a =
1

2

(
d2g(x0)

dx2

)
b =

dg(x0)

dx
c = g(x0)

So if we calculate the first and second derivatives our our function at step k then we can predict a
good value of x for the next step by approximating the function using a parabola. In particular,
xk+1 should be at the minimum point of the parabola

xk − xk+1 =
dg(x0)
dx

d2g(x0)
dx2

xk+1 = xk −
dg(x0)
dx

d2g(x0)
dx2

5

http://en.wikipedia.org/wiki/Taylor%27s_theorem


g(x) ≈ g(x0) +

(
dg(x0)

dx

)
(x− x0) +

1

2

(
d2g(x0)

dx2

)
(x− x0)2

For multiparameter problems this can be generalized as the the gradient of the function, ∇g,

rather than dg(x)
dx ; and the Hessian matrix of partial derivatives, H(g) rather than d2g(x0)

dx2 . For an
n-dimensional vector of parameters x1 up to xn, we would have:

∇g =

(
∂g(x)

∂x1
,
∂g(x)

∂x2
, . . . ,

∂g(x)

∂xn

)

H(g) =


∂2g(x)
∂x2

1

∂2g(x)
∂x1∂x2

. . . ∂2g(x)
∂x1∂xn

∂2g(x)
∂x2∂x1

∂2g(x)
∂x2

2
. . . ∂2g(x)

∂x2∂xn

...
...

. . .
...

∂2g(x)
∂x1∂xn

∂2g(x)
∂x2∂xn

. . . ∂2g(x)
∂x2

n



BFGS

The BFGS algorithms is one of the most widely used and effective Quasi-Newton method. Rather
than evaluating both the gradient and the Hessian, it accumulates information during the run (in
particular the changes in the gradients during the progression of the algorithm) that allow the
Hessian to be approximated from previously calculated information.

Because evaluation of the gradient and elements of the Hessian matrix are often as computationally-
expensive as the calculation of the likelihood, this “re-use” of the information of previous calcula-
tions can be very advantageous.

“Numerical Optimization” by Jorge Nocedal and Stephen J. Wright has a much more complete
description (and is available in pdf form from KU’s library).

In R this is done with optim(par, fn, method="BFGS". . .).

In SciPy, we use from scipy import optimize; at the top of the script and optimize.fmin bfgs

In both cases, if you don’t specify a function that can calculate the gradient, then it will be
approximated using finite differences.

Recall that
∂f(x)

∂x1
= lim

h→0

f(x+ h)− f(x)

h

the finite difference method approximates a derivative (or gradient) by making small changes to the
variable (small h values) and dividing the change in function value by h. Small, but finite, values
of h are considered, as long as they result in a detectable change in the function value. In other
words we want f(x+ h)− f(x) > tol.

6


	Nelder-Mead

