You suspect that a population of big horn sheep are made up of two classes of males based on their
sparring ability: Strong and Weak. The proportion of strong individuals is unknown.
Experiment:

e You randomly select 10 pairs of males from a large population.
e For each pair you randomly assign one of them the ID 0 and the other the ID 1.
e You record the # of winner from 2 contests.

Model:

e If two individuals within the same class fight, you expect either outcome to be equally likely.

e If a Strong is paired against a Weak then you expect that the probability that the stronger
one wins with some probability, w.

e w is assumed to be the same for every pairing of Strong versus Weak and the same for every
bout within such a pairing.

Here is the data (and three alternative codings):

winner
Pair # | bout 1 | bout 2 X Y 7
1 1 1 .CC1:1 51311:1 ylz(l,l) 21:0
2 1 0 {L‘2:1 l’lgzo yg—(l,O) 22:1
3 0 1 33320 1‘13:1 y3—(0,1) 2’3:1
4 1 1 T4 = T14 = 1 Y4 = (1, 1) 24 =
5 0 0 x5:0 :L'15=0 y5:(0,0) Z5=0
6 0 1 ZEGZO 3316:1 3/6:(071) 26:1
7 1 1 x7:1 1'17:1 y7:(1,1) Z7:0
8 0 0 g = 18 =0 || y8 =(0,0) || 28 =
9 1 0 rg=1 w9=01| yo=(1,0) || 20=1
10 1 1 rio=1 x0=1 | y10=(1,1) || 210 =0

What can we say about w?

At first it is tempting to think of this as twenty separate data points, represented by X. We would
like to formulate a likelihood:

L(w) = Pr(X|w) = [ [ Pr(xi|w)
=1

Because our assignment of 0 or 1 to the males is random, we would be forced to conclude that
Pr(X =0) = Pr(X = 1) = 1, and thus the likelihood would be:

L(w) = HPr(mi\w)
i=1
20
= H 1 9—20
20

=1

1



This is alarming because the likelihood is not a function of w. If we had done everything right,
then such a likelihood would mean that we can infer nothing about w from these data (every value
of w would return the same likelihood).

While it is true that Pr(z; = 0) = 0.5, further reflection reveals that Pr(z;; = 0) is not necessarily
0.5. The outcome of the first bout will give us some information about which male is stronger, and
so the outcome of the second bout is not independent of the first bout. We could approach the
likelihood as:
10
L(w) = H Pr(wi|w) Pr(mi+10|w)
i=1

Where the 7 + 10 indexing exploits the fact that I've numbered the subscripts of x such that the
i + 10 datum is the second bout associated with pair 7. This is a fine way to proceed, but it
may be less clumsy to simply recode the data to reflect that we have a pair of observations. This
is accomplished in the coding referred to as Y. Now we have ten independent trials, and each
realization of the random variable can assume one of four values (this is basically the same as the
last likelihood, but we won’t be relying on any tricks of variable subscripting).

10
11 Pr(yilw)
=1

At this point, we need to think about how to model Pr(y;|w) statements. Let’s tackle the probability
that we would get a (0,0) outcome from a pair of bouts. We don’t know whether either of the males
is “Strong” or “Weak,” so we’ll have to consider all possibilities. Let’s use rg and r; to denote the
“class” of rams 0 and 1; we will allow these variables to be S or W for strong and weak. By the
law of total probability:

Pr(y; = (0,0)|lw) = ( = (0,0)|w,ro = S,r1 = S)Pr(ro=S5,r1 =5)+...
Pr(y; = (0,0)|w, 79 = S,71 = W) Pr(ro = S,r1 = W) +...
+Pr(y, (0,0)|w, 9 = W,y = S)Pr(rg = W,r1 = S) + ...
.+ Pr(y; = (0,0)|w, g = W,ry = W) Pr(rg = W,r; = W)

We note that if the males are evenly matched, then all four values of y; are equally likely (probability
= 1/4). If we knew the males were mismatched, then the stronger would win both bouts with
probability w? because we assume that the bouts are independent. The weaker would win both
bouts with probability (1 — w)? by the same logic. This leads us to:

Pr(yi = (0,0)|w) = (1) Pr(ro = 8.1 = §) + w? Pr(ro = 8. = W) 4 ...

..—i—(l—w)QPr(TQ:WTl:S)—F (le) Pl“(?“():VV,T’1:W)

Clearly, if we want to get a likelihood (as a number, not an abstract equation), we’ll need to model
the probability of each male being strong or weak. The problem says that the “proportion of strong



individuals is unknown.” We can simply treat this as a nuisance parameter, s. Because we are
sampling the males randomly, we have:

Pr(y; = (0,0)[w) = <D 2 £ uwls(1—5) + (1— w)2(1 = 5)s + <i) (1—s)2

= <le> (1 — 25+ 25%) + (1 — 2w + 2w?)s(1 — s)

This does not look too attractive, but we seem to be making progress. We can go through the same
steps for the (1,1) outcome, and we get the same functional form:

1

Prty = (L) =

4> (1—25425%) 4+ (1 — 2w + 2w?)s(1 — s).

This makes sense, because we are randomly choosing a male to label 0, so we would not expect the
(0,0) outcome to be more probable than the (1,1) outcome.

When we consider an outcome like (0,1), and we have a pairing of males with mismatched strength
we find that the probability of the outcome is w(1 — w):

Pr(y; = (0,1)|w) — <1> 2+ w(l —w)s(l— ) + (1 — ww(l — s)s + <411> (1— )2

- (i) (1 — 254 25?) 4+ 2w(l — w)s(1 — s)

1

ity = (L0)w) =

4) (1 — 25+ 25) 4+ 2w(l —w)s(1 — s)

Adding up all four probabilities gives:

sum = 4 (i) (1 — 25+ 25%) + 4w(l — w)s(1 — 5) +2(1 — 2w + 2w?)s(1 — s)

= (1-25+2s%) +s(1—s) [dw — 4w? + 2 — 4w + 4w
= 1—25+2s%+25(1 —s)

= 1—25+2s%+25—2s°

=1

which should be the case because probability of all of the distinct events should add up to 1.

We are ready to express the log-likelihood. We will use ngg, ng1, 710, and n1; to denote the number
of trials that result in (0,0), (0,1),(1,0), and (1, 1) respectively:

InL(w,s) = nooan > 1—28—1—25)+(1—2w—|—2w2)s(1—8)}+...
+n01 In ( 1—25+282)+2w(1—w)3(1—5)]+...

(

)
+n101n ( ) 1—2$+232)+2w(1—w)3(1—s)]+...
)

1
4
1
4
1
4

+n11ln ( 1—23+232)—|—(1—2w—|—2w2)5(1—3)] + ...



0.1 Sufficiency

Notice that some of the terms are very similar to each other. This is not surprising, as we noted
symmetry before that cause some probabilities to be equal. But it will let us collapse terms:

mL(w,s) = (noo+ni)n Ki) (1— 25+ 257) + (1 — 2w + 20?)s(1 — s)] +o

+(no1 + n1o) In [(1) (1 —25+25%) +2w(l —w)s(1 — s)}

Recall that the variables with n are the counts that we get from our data and everything else is a
parameter. We have just collapsed terms that feature aspects of our data into a sum. The fact that
we can do this means that ngg + n11 tells us just as much as knowing both ngy and nq11. Knowing
noo and nip is certainly a richer description of our results, but the fact that both of these bits of
data contribute likelihood terms with the same functional form implies that these two pieces of
data tell us the same type of information. A dataset with ngg = 3 and n1; = 3 would have the
same properties as one with ngg = 4 and n1; = 2 because the sum of the terms is 6 in both cases.

Our factoring into terms that glom together bits of the data implies that two pieces of data ngg+mn11
and ng; + n1g would tell us everything that we need to know. Hence these two sums are sufficient
statistics for our inference. This is what inspired the description of the data as Z with z; being
0 if the same male one both bouts, and 1 if each male won one bout. Summing z; is the same as
no1 + n1o, so knowing the full data set size and ) z; is all we need to know.

0.2 Reparameterizing

We could proceed to find the maxima by differentiating with respect to w and s, and setting the
derivatives to zero. This looks daunting, so it may be worth looking more carefully. One thing to
do would be to simply examine the surface for our data set using plotting software (s is on the
x-axis, and w is on the y-axis in the contour plot):
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This is a disturbing set of graphs. We don’t have the likelihood peaking at one point, instead we
have pair of curves through the parameter space that form the MLE ridge.


http://en.wikipedia.org/wiki/Sufficiency_%28statistics%29
http://en.wikipedia.org/wiki/Sufficiency_%28statistics%29

The surface also looks like it has a couple of mirrors placed upon it. This is a hint that we may be
able to reparameterize to avoid considering points of the parameter space that are indistinguishable
from one another.

We may notice that s(1 — s) is prominent in both terms of our log-likelihood. In fact if we express
1 —2s+2s? as 1 — 2s(1 — s) then we can see it in even more parts of the equation:

InL(w,s) — (noo—knn)ln[(i) (1—23(1—3))4—(;—w+w2)2s(1—s)}—i—...

+(no1 +n10) In Ki) (1—25(1 — ) + w(l — w)2s(1 — s)}

This suggests that things will be easier to look at if we substitute a new variable in:

m = 2s(1 — s)
to get:
InL(w,m) = (ng+mni1)ln Ki) (1—m)+ (% —w —i—wQ)m} +...

1
+(no1 + n1o) In [<4> (I—m)+w(l- w)m]
Notice that this replacement actually got rid of s from our equation!

This means that if we knew m and w we could calculate the likelihood without calculating s from m.
We say that {w, m} is an alternative parameterization of our model, that may be more convenient
to work with than {w, s}.

One great feature of MLE estimation is that we can reparameterize at will. If we estimate m we
can always convert that to a MLE § by solving for the values of s that yield m. In particular:

1++1-2m
§s= ——m———

5 M

0.2.1 Reparameterizing constraints

One caveat is that our model only allows certain values of m, and we must enforce these constraints.
If we don’t, then we can infer values of m that fundamentally disagree with our original model -
rather than simply reparameterizing the model we will have changed the predictions that it makes
about the data. To be specific, we know that s is a proportion, so 0 < s < 1, and we can visualize
the values of m in this range:
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The maximum value of m that our model can produce is 0.5 - this occurs when s = 0.5 so the
probability of a mismatch is maximized. In fact if we consult our previous calculations, we will
see that what we have named m is simply the probability that one male is strong and the other
is weak. So if we choose to work with m rather than s, we must enforce 0 < m < 0.5 rather than
0<s<1.

Notice (from Eqn 1 or by looking at the plot) that every value of m corresponds to two values of
s. Our likelihood may show a preference for some value of m, but how will we know which of the
two values of s to pick? We will not know. In fact, we are seeing evidence that not all values of s
are identifiable based on the experiment that we’ve performed. Even if we had a million trials of
two bouts each we would not be able to tell whether s = 0.6 fits the data better than s = 0.4.

The reason is that both of these parameter values make the same predictions about the data. s
only affects the probability of the data “through” m - so if two values of s predict the same m,
then the likelihood will not be able to choose the better value for s. This fact explains some of the
symmetry that we saw in the likelihood surface. If we plot with respect to w and s we less of the
“mirrored” appearance:
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Furthermore we can note that we chose w to represent the probability that the stronger male wins.
This should be at least 0.5 (otherwise he wouldn’t be “stronger”). So we can restrict .5 < w < 1:
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We still have a ridge through the likelihood, but getting rid of the symmetry can make our final
answer cleaner to express. Note that the non-identifiability of s still exists (we haven’t gotten rid
of the symmetry in the likelihood function with respect to s), but reparameterizing will make our
lives easier.

0.3 Reparameterization again

We can actually reparameterize a bit further. If we define a variable:

(e e

1-2
InL(p) = (noo+ni1)Inp+ (ng1 +nip)In [ 5 p]

then we get

This may seem like a big leap, but in it makes sense if you think about it. p is simply the probability
of an outcome in which the same male wins both bouts. Given that we arbitrarily labeled the males
0 and 1, it seems intuitive that we should only be concerned with modeling the probability of one
male winning both rather than which male wins a bout.

Furthermore, the discussion on sufficiency revealed that we really only have one relevant quantity
that we learn by doing the experiment. We know n by experimental design. We observe ngg + n11,
and that single bit of information is the basis of our inference (the other statistic ng; +mnio is simply
n —noo — ’I’LH).

Given that we only have one “free” bit of data, it is not too surprising that we can boil the model
down into a one parameter form.

Our model is now analytically tractable:

dIn L(p) (noo +n11)  (no1 + no)
dp p 3P




(noo +n11)  (no1 + nao)

0 = - -
P 3D
(no1 +110) (noo + n11)
L—p b
R 1
(no1 +mi0)p = (5 — p)(noo + n11)
A npg + N
(no1 + mi0 + noo + n11)p = %
R neo + N1l
(n)p = 5
b o= oo + N1 ~ 03
2n

Once again, we must pay attention to the constraints on our new parameterization. Plotting (or
examining the Eqn 2) helps us see that p gets larger as either w or m get larger:
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Thus the smallest value of p occurs when m = 0 and w = .5. At this point p = .25. The largest
value attainable value of p occurs at p = 3/8 when m = .5 and w = 1.

Fortunately, p that we calculated falls in this range, so we have found a value that maximizes the
likelihood and still fits our model.

We can translate back to w and m via:

. p— .25
m = S
25 — W + w?
. mA4/(4p—1)m
W = -
2m

But these are not very satisfying because each MLE corresponds to a range of values (depending
on the MLE of the other parameter).

Fortunately analyzing how w and m interact reveals that the range of values that are on the MLE
ridge follow a convenient form:
wm:b < w < 1



where W,,— 5 is the MLE of w when m is forced to its maximum value of 0.5:

mes = 5++/(2p—.5)

So

5+/@2p—5) <<l

The lowest MLE of m occurs when w = 1, so:

Myp=1 <M < 0.5

. . p—25
w=l T o 111
— 4p—1

So
4p—1<m <0.5
For our problem, p = 0.3 so:

0.816227766016838 <w < 1
2 <m< 5

These broad ranges are seen by plotting the profile of the log-likelihood with respect to each pa-

rameter (first w then m):

115x10°% - 115x10°% -

11x10°6F 11x10°%F
1.05%x10°¢ - 1.05x10°¢ -

1.x10°¢ - 1.x10°6 -

I I I
0.3 0.4 05

We can use the LRT to construct the confidence interval on p and then translate that into statements
about w or m (or even back to s by converting the statements about m into terms of s).
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