
Marginal likelihood estimation

In ML model selection we judge models by their ML score and the number
of parameters. In Bayesian context we:

• Use model averaging if we can “jump” between models (reversible jump
methods, Dirichlet Process Prior, Bayesian Stochastic Search Variable
Selection),
• Compare models on the basis of their marginal likelihood.

The Bayes Factor between two models:

B10 =
P(D|M1)
P(D|M0)

is a form of likelihood ratio.



Bayes factor:

B10 =
P(D|M1)
P(D|M0)

P(D|M1) is the marginal probability of the data under the model, M1:

P(D|M1) =
∫

P(D|θ,M1)P(θ)dθ

where θ is the set of parameters in the model.

(The next slides are from Paul Lewis)
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Average likelihood =

Marginal likelihood (1-param. model)
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Average likelihood =

Marginal likelihood (2-param. model)
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Likelihood Surface when K80 true

JC69 model (just this 1d line)

K80 model (entire 2d space)
sequence length = 1000 sites
true branch length = 0.15
true kappa = 4.0

K80 wins

Based on simulated data:
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Likelihood Surface when JC true

sequence length = 1000 sites
true branch length = 0.15
true kappa = 1.0

JC69 model (just this 1d line)

K80 model (entire 2d space)

JC69 wins

Based on simulated data:



Important point: Bayes Factor comparison remove the effect of the prior
on the model itself, but the priors on nuisance parameters still matter!

Think about your priors - using a very parameter-rich model may not be
overparameterized if you have prior knowledge about the parameter values.

It is tricky to estimate P(Data), there are “black-box” techniques (such as
using the harmonic mean of the likelihoods sampled during MCMC), but
they are quite unreliable.

Ideally, you can construct an MCMC sampler that “walks” over different
models then you can use MCMC to estimate a posterior probability of
models. Or you can conduct parameter inference that averages over
models. Some common techniques for this are:

• reversible jump methods,
• use of a Dirichlet Process Prior to partition groups of data into subsets

which share a homogeneous process,
• Bayesian Stochastic Search Variable Selection
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There would have to be a “reverse” Add-Edge move



Homework

Questions?



Richer models

What if we think:

• There is a threshold level of N, P, and soil moisture required

to set seed,

• N and P from fertilizer can run off if there is a lot of rain,

• decomposition of leaf litter returns N and P to the soil in 3

- 4 years.

How can we model this?



Likelihood-based inference when we cannot calculate a
likelihood

The likelihood of parameter point θ is P(X|θ), where X = data

We can:

• calculate P(X|θ) using rules of probability,

• approximate P(X|θ) by simulating lots of data sets, Yi. Then

count the fraction of simulations for which Yi = X

P(X|θ) ≈
∑n

i=1 I(Yi = X)
n

where I(Yi = X) is an indicator function that is 1 if Yi = X

and 0 otherwise.



Approximate Bayesian Computation

Set S to be an empty list.

While the number of samples in S is small (below some

threshold):

• Draw a set of parameter values, θj, from the prior, P(θ),

• Simulate 1 dataset, Y1, according to the parameter values,

θj.

• If Y1 = X, then add θj to S

S is then a sample of parameter values that approximate

posterior.

There is no autocorrelation in this procedure!



Approximate Bayesian Computation - a variant

Downsides: Slower than analytical calculations, and if P(X|θ)
is small (and it usually is) then you’ll need lots of replicates.

Set S to be an empty list.

While the number of samples in S is small (below some

threshold):

• Draw a set of parameter values, θj, from the prior, P(θ),

• Simulate n datasets, Yi for i ∈ {1, 2, . . . n} according to the

parameter values, θj.

• Add θj to S and associate it with a weight, wj ≈Pn
i=1 I(Yi=X)

n

Do posterior calculations on weighted averages of the samples

in S.



Approximate Bayesian Computation - another variant

Set S to be an empty list.

While the number of samples in S is small (below some

threshold):

• Draw a set of parameter values, θj, from the prior, P(θ),

• Simulate 1 dataset, Y1, according to the parameter values,

θj.

• Add θj to S if ||Y1−X|| < ε, where ε is a threshold distance.

Do posterior calculations on the samples in S.



Approximate Bayesian Computation - a fourth variant

Let A(X) be a set of summary statistics calculated on X.

Set S to be an empty list.

While the number of samples in S is small (below some

threshold):

• Draw a set of parameter values, θj, from the prior, P(θ),

• Simulate 1 dataset, Y1, according to the parameter values,

θj.

• Add θj to S if ||A(Y1)− A(X)|| < ε, where ε is a threshold

distance.

Do posterior calculations on the samples in S.



Approximate Bayesian Computation - yet another variant

Let A(X) be a set of summary statistics calculated on X.

Set S to be an empty list.

While the number of samples in S is small (below some

threshold):

• Draw a set of parameter values, θj, from the prior, P(θ),

• Simulate 1 dataset, Y1, according to the parameter values,

θj.

• Add θj to S with a weight, wj, proportional to wj ≈
||A(Y1)−A(X)||.

Do posterior calculations on weighted averages of the samples

in S.



If A is not a set of sufficient summary statistics, then you are

throwing away information.

In general ABC let’s you tackle more difficult problems: it is

easier to simulate under a complicated problem than it is to do

inference.

Usually a problem that can be tackled with ABC can be tackled

by adding lots of latent variables. But it may not be practical.



Alternative MCMC samplers

There are lots:

• Metropolis-Hastings with the proposed state being drawn

from:

– an arbitrary proposal distribution,

– the prior,

– the conditional posterior (Gibbs Sampling).

• adaptive rejection,

• slice sampling,

• Metropolis-coupled MCMC,

• delayed-rejection Metropolis-Hastings,

• SAMC,

• importance sampling,

• . . .



Importance sampling: we simulate points from one distribution, and
then reweight the points to transform them into samples from a target
distribution that we are interested in:
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Importance sampling

The method works well if the importance distribution is:

• fairly similar to the target distribution, and

• not “too tight” to allow sampling the full range of the target distribution


