Marginal likelihood estimation

In ML model selection we judge models by their ML score and the number
of parameters. In Bayesian context we:

e Use model averaging if we can “jump” between models (reversible jump
methods, Dirichlet Process Prior, Bayesian Stochastic Search Variable

Selection),
e Compare models on the basis of their marginal likelihood.

The Bayes Factor between two models:

P(D|M,)

Bin =
7 P(D| M)

Is a form of likelihood ratio.



Bayes factor:

P(D|M,) is the marginal probability of the data under the model, M;:
P(D|M;) = / (D0, M,)P(60)d0

where 6 is the set of parameters in the model.

(The next slides are from Paul Lewis)



Marginal likelihood (1-param. model)
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Marginal likelithood (2-param. model)




[Likelihood Surface when K80 true

Based on simulated data:
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Likelithood Surface when JC true

Based on simulated data:
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Important point: Bayes Factor comparison remove the effect of the prior
on the model itself, but the priors on nuisance parameters still matter!

Think about your priors - using a very parameter-rich model may not be
overparameterized if you have prior knowledge about the parameter values.

It is tricky to estimate P(Data), there are “black-box" techniques (such as
using the harmonic mean of the likelihoods sampled during MCMC), but
they are quite unreliable.

|deally, you can construct an MCMC sampler that “walks” over different
models then you can use MCMC to estimate a posterior probability of
models. Or you can conduct parameter inference that averages over
models. Some common techniques for this are:

e reversible jump methods,

e use of a Dirichlet Process Prior to partition groups of data into subsets
which share a homogeneous process,

e Bayesian Stochastic Search Variable Selection



Delete-Edge Move

There would have to be a “reverse” Add-Edge move



Homework

Questions?



Richer models

What if we think:

e There is a threshold level of N, P, and soil moisture required
to set seed,

e N and P from fertilizer can run off if there is a lot of rain,

e decomposition of leaf litter returns N and P to the soil in 3
- 4 years.

How can we model this?



Likelihood-based inference when we cannot calculate a
likelihood

The likelihood of parameter point 6 is P(X|6), where X = data

We can:

e calculate IP(X|0) using rules of probability,
e approximate P(X |#) by simulating lots of data sets, Y;. Then
count the fraction of simulations for which Y, = X

IP’(X]H) ~ Z?:l I(Y;l — X)

(1

where I(Y; = X)) is an indicator function that is 1 if ¥; = X
and 0 otherwise.



Approximate Bayesian Computation

Set S to be an empty list.
While the number of samples in S is small (below some

threshold):

e Draw a set of parameter values, 6;, from the prior, P(0),
e Simulate 1 dataset, Y7, according to the parameter values,
o If Y1 =X, then add 0, to S

S is then a sample of parameter values that approximate
posterior.

There is no autocorrelation in this procedure!



Approximate Bayesian Computation - a variant

Downsides: Slower than analytical calculations, and if P(X|0)
is small (and it usually is) then you'll need lots of replicates.

Set S to be an empty list.
While the number of samples in S is small (below some
threshold):

e Draw a set of parameter values, 6;, from the prior, P(8),
e Simulate n datasets, Y; for i € {1,2,...n} according to the
parameter values, 0;.

e Add 0; to S and associate it with a weight, w; =
> i1 L(Yi=X)

n

Do posterior calculations on weighted averages of the samples
in S.



Approximate Bayesian Computation - another variant

Set S to be an empty list.
While the number of samples in S is small (below some
threshold):

e Draw a set of parameter values, 6;, from the prior, P(0),

e Simulate 1 dataset, Y7, according to the parameter values,
0;.

e Add 0, to S'if ||Y1— X|| < €, where € is a threshold distance.

Do posterior calculations on the samples in S.



Approximate Bayesian Computation - a fourth variant

Let A(X) be a set of summary statistics calculated on X.

Set S to be an empty list.
While the number of samples in S is small (below some

threshold):

e Draw a set of parameter values, 6, from the prior, P(8),

e Simulate 1 dataset, Y7, according to the parameter values,
0;.

e Add 6; to S if ||A(Y1) — A(X)]|| < €, where € is a threshold
distance.

Do posterior calculations on the samples in §.



Approximate Bayesian Computation - yet another variant

Let A(X) be a set of summary statistics calculated on X.

Set S to be an empty list.
While the number of samples in S is small (below some

threshold):

e Draw a set of parameter values, 6, from the prior, P(8),

e Simulate 1 dataset, Y7, according to the parameter values,
0;.

e Add 60; to S with a weight, w;, proportional to w; =
JA(Y2) — A(X)]|.

Do posterior calculations on weighted averages of the samples

in .S.



If A is not a set of sufficient summary statistics, then you are
throwing away information.

In general ABC let's you tackle more difficult problems: it is
easier to simulate under a complicated problem than it is to do
inference.

Usually a problem that can be tackled with ABC can be tackled
by adding lots of latent variables. But it may not be practical.



Alternative MCMC samplers

There are lots:

e Metropolis-Hastings with the proposed state being drawn
from:

— an arbitrary proposal distribution,

— the prior,

— the conditional posterior (Gibbs Sampling).

adaptive rejection,

slice sampling,

Metropolis-coupled MCMC,

e delayed-rejection Metropolis-Hastings,

e SAMC,
e importance sampling,



Importance sampling: we simulate points from one distribution, and
then reweight the points to transform them into samples from a target
distribution that we are interested in:

Importance and target densities
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Samples from importance distribution
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Importance sampling

The method works well if the importance distribution is:

e fairly similar to the target distribution, and

e not “too tight” to allow sampling the full range of the target distribution



