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Goals of the course

• Cover the basic theory associated with point estimation, interval
estimation, and hypothesis testing in the maximum likelihood and
Bayesian paradigms.

• Use some simple computer programs in Python and R to demonstrate
that it is not too difficult to apply this form of statistical theory.

• The examples I use are all “toy” simulated datasets, so we will not really
get into real biology.



Schedule

• Introduction to likelihoods and basic scripts for ML-based confidence
intervals (today)

• Tuesday: numerical approaches used to optimize likelihoods, and dealing
with multi-parameter models.

• Bayesian Introduction: Bayesian inference and Markov chain Monte Carlo

• Using model-jumping MCMC to perform model averaging.



The two competing approaches to statistics:

• frequentist:
– probability: the relative frequency of an event if you were able to

repeat a trial an infinite number of times.
– goal: make an argument like “This result differs significantly from

what we would expect if the null model were true. Either the null
is not true or we experienced an unusually large amount of sampling
error.” The P -value summarizes how unusual it would be to see results
like yours if the null hypothesis were true.

– we make probability statements about: the long-run performance
of our estimation procedures.

• Bayesian:
– probability: degree of belief
– goal: express the uncertainty of an estimate: “Given a model and

what one knew before one collected the data, one should now believe
that the P(µ > 2.3) ≈ 0.87”

– we make probability statements about: the true values of
parameters/models.



The frequentist “recipe” for hypothesis testing

1. Ask a scientific question.
2. State your question in terms of H0 and HA

3. Collect a random sample
4. Calculate a value of a test statistic
5. Determine P -value:

(a) What values of the test statistic are expected under H0?
(b) How does the observed test statistic differ from these expectations?
(c) What is the probability of observing a value of a test statistic this

extreme or more extreme if the H0 is true? – this is the P -value.
6. Make a decision about H0 and HA

7. Answer your question and report the results.

Choosing a test statistic can be difficult.
Deriving a null distribution (step 5a) can be really difficult.



Question: Where does “likelihood” fit in?

Answer: the choice of a test statistic in frequentist statistics. And we’ll
see that the likelihood is central to Bayesian inference, too.

Law of likelihood: “the extent to which the evidence supports one parameter
value or hypothesis against another is equal to the ratio of their likelihoods”
1

Using a likelihood ratio as a test statistic → powerful test.

Using maximum likelihood as an estimator: → powerful, and statistically
consistent (for well-behaved models) estimator.

1definition from Wikipedia – everyone’s favorite source of assertions

https://en.wikipedia.org/wiki/Likelihood_principle#The_law_of_likelihood


P -values for likelihood ratios

Sometimes it is analytically tractable to calculate a null distribution.

More commonly, we test null models that are nested within a richer model,
so we use the following trick:

For large sample sizes,
if you calculate a likelihood under a model with x extra parameters,
2 × the natural logarithm of
the ratio of likelihoods between the larger model and the true model
will be distributed according to χ2

df=x

This is often referred to as the “likelihood ratio test.”



Definition of likelihood

In common English usage: “likelihood” = “probability.”

In statistics: The likelihood of a model/parameter θ based on observing
data X is:

`(θ) = P(X | θ)
`(θ) = f(X | θ)

Because we use likelihood ratios for estimation, it is acceptable to use any
function proportional to the probability of the data.

`(θ) ∝ P(X | θ)
`(θ) ∝ f(X | θ)

Only compare likelihoods when they are calculated on the same data set X.



The sum of likelihoods over all parameter values is. . .

some number, but nothing you can use.

∑
i

P(X | θi) is not necssarily 1

By the laws of probability: ∑
P(Xi | θ) = 1

but we know what our data is, so we do not sum over all possible data sets!



Modeling

Modeling to perform likelihood calculations is the art of moving from a
scientific question to abstract representations of the question which allow
you to calculate the probability of a particular data outcome.

Modeling require understanding the rules of probability and often also
requires:

• knowledge of what statistical distributions are natural fits for different
processes, and
• knowledge of some form of stochastic process theory (often Markov

processes).

Expertise in modeling requires a lot of training and is beyond the scope of
this workshop.

But a few rules, go a long way. . .



rules of probability

1. P(A) = 1− P(not A)

2. P(A,B) = P(A)P(B | A) = P(B)P(A | B)

3. P(A,B) = P(A)P(B) if A and B are independent

4. P(A or B) = P(A) + P(B)− P(A,B)

5. P(A or B) = P(A) + P(B) if A and B are mutually exclusive.

6. P(A) =
∑n
i=1 [P(A | B = bi)P(B = bi)] if B ∈ {b1, b2, . . . , bn}.

7. Bayes’ rule:

P(A | B) =
P(B | A)P(A)

P(B)



A widely used result from continuous time Markov
processes

If Q is a matrix of instantaneous rates where qij is the rate of transitioning
from state i to state j, then:

P(t) = etQ

where t is the time.

This lets us extrapolate about the effects of a constant process over time.



Working some examples

Now we’ll switch to 3 examples.

There is python and R code for 2 of them.

The code is not the most robust in the world - you should try using a
number of optimizers before you publish.

But it should help us demonstrate the concepts.



A toy example: estimating the mean from a sample

X: a set of random, independent continuous measurements sampled from
the same population.

Assume that we know the population standard deviation, and want to
estimate the population mean, µ.



`(µ) = P(X | µ, σ) =

n∏
i=1

P(xi | µ, σ)

=

n∏
i=1

[
1√
2πσ2

e
−(xi−µ)

2

2σ2

]

Note that µ that minimizes the squared error (the least squares estimator)
maximizes the likelihood.



`(µ) = P(X | µ, σ) =

n∏
i=1

P(xi | µ, σ)

=

n∏
i=1

1√
2πσ2

e
−(xi−µ)

2

2σ2

logL(µ) =

n∑
i=1

log

[
1√
2πσ2

e
−(xi−µ)

2

2σ2

]

= n log

[
1√
2πσ2

]
+

n∑
i=1

log

[
e
−(xi−µ)

2

2σ2

]

= n log

[
1√
2πσ2

]
− 1

2σ2

n∑
i=1

(xi − µ)2

Note that µ that minimizes the squared error (the least squares estimator)
maximizes the likelihood.



An example from phylogenetics

If we have a tree T and branch lengths ν as our model, what is the
probability of an alignment of DNA sequences?

We can think of a branch length being the product of time t and rate of
sequences evolution α:

ν = αt



Copyright © 2007 Paul O. Lewis 9

A

A

A T

C

C

Likelihood of a tree
(data for only one site shown)

Arbitrarily 
chosen to serve 
as the root node

Ancestral states like 
this are not really 
known - we will 
address this in a 

minute.
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JC69 model

• Bases are assumed to be equally frequent (all 0.25)
• Assumes rate of substitution (α) is the same for all 

possible substitutions
• Usually described as a 1-parameter model (the parameter 

being α)
• Remember, however, that each edge in a tree can have its 

own α, so there are really as many parameters in the model 
as there are edges in the tree!

Jukes, T. H., and C. R. Cantor. 1969. Evolution of protein molecules. Pages 21-132 in H. N. Munro (ed.), 
Mammalian Protein Metabolism. Academic Press, New York.



JC instantaneous rate matrix - the Q matrix for JC

The 1 parameter is α (sometimes parameterized in terms of µ).

This is the rate of replacements (“disruptions” that change the

state):

To State

A C G T

From
A −3α α α α

State
C α −3α α α

G α α −3α α

T α α α −3α
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Probability of “A present”
as a function of time

Lower curve assumes we started with some 
state other than A (T is used here). Over 
time, the probability of seeing an A at this 
site grows because the rate at which the 
current base will change into an A is α.

Upper curve assumes we started with A at time 0.
Over time, the probability of still seeing an A at 
this site drops because rate of changing to one of 
the other three bases is 3α (so rate of staying the 
same is -3α).

The equilibrium relative 
frequency of A is 0.25
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Water analogy (time 0)

•Start with container A completely full and others empty
• Imagine that all containers are connected by tubes that allow 

same rate of flow between any two
• Initially, A will be losing water at 3 times the rate that C 

(or G or T) gains water

A C G T
α

−3α
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Water analogy (after some time)

A C G T
A’s level is not dropping as fast now because it is now 
also receiving water from C, G and T
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Water analogy (after a very long time)

Eventually, all containers are one fourth full and there is zero
net volume change – stationarity (equilibrium) has been 
achieved

A C G T

(Thanks to Kent Holsinger for this analogy)



Change probabilities

We can calculate a transition probability matrix as a function

of time by:

P(t) = eQt

The important thing to note is the rates (Q matrix) is multiplied

by the time.

We can’t separate rates and times since we always see the

effect of their product.

Is a medium level of character divergence:

1. medium rate of change and medium amount of time,

2. high rate, but short time period,

3. low rate, but a long time period?



JC transition probabilities

Pii(ν) = P(end = i | start = i, ν) =
1

4
+

3

4
e−4ν/3

Pij(ν) = P(end = j | start = i, ν) =
1

4
− 1

4
e−4ν/3
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Likelihood of a tree
(data for only one site shown)

Arbitrarily 
chosen to serve 
as the root node

Ancestral states like 
this are not really 
known - we will 
address this in a 

minute.
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segment of the tree
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PCT(ν4) PCC(ν5)
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Brute force approach would be to calculate Lk for
all 16 combinations of ancestral states and sum
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Pruning algorithm* 
(same result, much less time)

Many calculations can be done just once,
and then reused many times

*The pruning algorithm was introduced by: Felsenstein, J. 1981. Evolutionary trees from DNA sequences:  
a maximum likelihood approach. Journal of Molecular Evolution 17:368-376



Another toy example

You tag 1000 territorial animals with transmitting tags.

Every month you survey the area. Assume that you can detect every tag
attached to a living organism.

You know (from other studies) that the probability of a tag falling off are:
0.10 in the first month, 0.15 in the second month, 0.2 in the third month,
and 0.25 for every month after that.

Can you estimate the per-month probability of death?


