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Warning: These are very sketchy notes. T did not care at all about style.
In the two hours of my survey lecture I will concentrate on limit
theorems, such as laws of large numbers, central limit (and other
limit) theorems. I will not have time for the completely elemen-
tary introduction. Please read the first cca. 50 pages of these
notes, before the summer school. So, in the two hours survey I
will be able to present some more interesting stuff (the content of
the second half of these notes).

1 Introduction

1.1 Sample space + algebra of events + probability = prob-
ability space

Here are some very simple ‘typical probabilistic’ statements (and questions)

formulated in ordinary everyday language. Let’s try to analyze them:

(A) Tossing a coin the chances for HEAD to turn up are 1:2.
(B) Throwing two dice the chances for getting at least one ace are 11:36.

(C) In the classroom there is a quantity of gas (air) in thermal equilibrium.
The probability of finding all the gas molecules gathered in the left half

of the classroom, is extremely small.

(D) On the square grid Z? (streets of Manhattan) a random walker (drunken
person) starts from the origin (leaves the pub) and walks in discrete

time units from site to site (corner to corner) so that at each stage (s)he



chooses the next visited site completely randomly ((s)he is completely
drunk). What is the probability that (s)he returns to the origin (to
the pub) whithin n steps? Does (s)he surely return at all? How about

the analogous problem on the cubic lattice Z37

(E) Sites of the square grid Z? are coloured green (1, open), respectively,
red (0, closed) with probability p, respectively 1 — p, independently.
What is the probablility that there is an infinite green (open) path
starting from the origin of the grid?

In order to describe mathematically these situations first we define the
sample space, that is, the set of all possible outcomes of the ‘experiment’.
Denote the sample space by ). For the five concrete setups the sample space

1s:

(A) Q= {H,T}
(B) Q:={1,2,...,6} x {1,2,...,6)
(C) Q:= {(£15£25"'a£N) = ('T’iayiazi) EA,Z‘ = 1,2"'5N}

where A = [0, L1] x [0, Lo] x [0, L3] C R? is the room, in Euclidean

coordinates and N is the number of molecules in the room
(D) Qo= {(wi)2) rwi € {h, =, Lt = {1, L«
d
(E) Q= {(wa) ez : we € {0,1}} = {0,1}”

Cases (A) and (B) are trivial. In case (C) r; denotes the position of the i-th
molecule, in Euclidean coordinates. In caze (D) w; denotes the i-th step of
the random walker. In case (E) w, denotes the state (closed or open) of the
site z € Z2. The possible outcomes of the experiment are sample points,
i.e., elements of the sample space.

We ususlly speak about probability of events. Events are (almost) arbi-

trary agregates of possible outcomes. That is: subsets of the sample space.



In our concrete cases we spoke about the following events:

(A) A={H}CQ

(B) B ={(6,1),(6,2),...,(6,6),...,(2,6),(1,6)} CQ

(C) C={(ry,ry...,ry) €Q:z;€[0,L1/2),i =1,2...,N}
(D) Dp={weQ:Ik<nst w+wr+ - +wp=0}

Dy ={weQ:3k<o0st w+ws+---+wg =0}

(E) E = {w € Q: there exists an infinite self avoiding lattice path
0==z0,21,... s.t. forall j EN w,, =1}

You notice that in the first three cases the events considered are rather
simple to formulate, in the last two cases this is slightly more tricky.

In general, the collection of (meaningful) events F is a subset of the
power set of the sample space: F C P(2). In simple combinatorial cases,
i.e., when the sample space is either finite or countably infifnite (e.g. cases
(A) and (B) above) we can consider all possible subsets of €, as events (that
iss F = P(2)). When the sample space is uncountable (e.g. cases (C),
(D) and (E) above) more care is needed. In the present lecture we shall
completely disregard these technical subtlties, just warn the student that
some nontrivial technical problems may arise here, which are subject of the
so called measure theroetic foundations of probability theory.

The collection of events F is closed under the natural set theoretical

operations. It satisfies the following axioms:
(Al) Qe F
(Ail) If A,B € F then A\Be F
(Aiiia) If A,B € F then AUB € F

Note that from these axioms it follows that F is closed under all natural set
theroetical operations. In particular, if A,B--- € F then A°:=Q\ A€ F,
ANB € F, etc. By induction it follows that any finite number of these
operations are allowed within F. But it does not follow that F is closed
under formation of countable union. This subtlety is interesting only when

the sample space is infinite. In this case we have to replace (iiia) by



(Aiiib) If A; € F, j € N then |J; 4; € F

Elements of F are called events or measurable subsets of Q2. The two special
event Q € F and ) € F are called the sure, respectively, the impossible
event. F, with the natural set theoretical operations forms a sigma-algebra.
(the term ‘sigma’ refers to the fact that countable unions are allowed.)

We spoke about probability of events. The probability is a weight
assigned to each event. That is: P : F — [0, 1] is a function defined on the

domain F with range [0, 1]. It satifies the following very natural axioms.
(Pi) P(Q2) = 1. That is: the sure event has full weight.

(Piia) If A,B € F and AN B = () then P(AU B) = P(A) + P(B). That
is, the probability is additive.

In case of infinite sample space we have to allow for countable-additivity (or
o-additivity):

(Piib) If A; € F, j = 1,2,... and for any ¢ # j A; N A; = ( then
P(U;21 4;) = 32721 P(4;). That is: the probability is countably addi-

titve (or o-additive.

The asignment of the weights (probabilities) to events is actually the defi-
nition of the problem to be considered. In many cases there is some natural
symmetry consideration leading to some natural asignment of probabilities.
In most combinatorial and geometric problems the probability weight is
uniformly distributed among the outcomes. In these special cases the prob-
ability of the arbitrary event A is given by the simple formula

_ Al

P(4) = g

where | - | denotes the natural measure of size, cardinality in discrete cases,
volume in continuous cases. But we should em[phasize that this is not a
universally valid formula. We apply the ‘uniform assignment of weights’
only if we have good reason (symmetry) to do so.

Generally, if the sample space Q is discrete (finite or countable), we can

assign weights to sample points:

p:Q —[0,1], such that Zp(w) =1,
weN



and define the probability of the events A C €2 by

P(A) =) pw).

weA

Clearly, P(-) defined this way will satisfy the axioms of probability function.

And vice versa, on discrete sample spaces, any probability function P :

P(2) — [0,1] uniquely defines a weight function p : @ — [0, 1], by p(w) :=

P({w}). But we should emphasize that this procedure does not work in

case of continuous sample spaces. Then, typically, each single sample point

will have zero weight and the probability function can not be built up from

elementary atomic weights.

Back to our concrete cases:

(A)

(B)

(C)

(D)

Assuming that the coin to be tossed is unbiased, by symmetry between
H and T, we naturally assign equal weights to the elementary outcomes.
So, P(A) = 1/2, indeed.

Assuming that the two dice are not leaded, again we assign uniformly,
equal weights to all 36 possible outcomes. We get indeed P(B) =
11/36.

A (very much simplified) mathematical model of thermal equilibrium
could be: uniform distribution of the sample point in the space 2 =
AYN. Simple computation leads to P(C) = 27N. Given N of the
order 10?8 this event seems to be really very-very unlikely, though not

impossible.

This is much more complicated than the previous cases. One starts
with assigning probabilities to the finite random walk trajectories, say
of N steps. We asssign equal weight to all 4" (or: in d-dimensions
(2d)N) N-step trajectories. Applying a far non trivial statement from
abstract measure theory we conclude that taking the limit N — oo
this defines uniquely a probability measure on the set 2 of infinitely
long trajectories. After some rather involved and beautyful arguments
it turns out that the probability that the random walker ever returns
to the origin is 1 in one and two dimensions and it is less than 1 in
three and more dimensions. This is George Pélya’s celebrated theorem

about recurrence/transience of simple symmetric random walk on Z¢.



Believe it or not, this classical result of probability theory is essentially
equivalent to non-existence, respectively existence, of condensation of

the ideal Bose gas in two, respectively three and more dimensions.

(E) This is the site percolation problem on Z2. Again, we start with finite
boxes Ay := [-N, N]x [—N, NJNZ2 On the set of finite configurations
Qn := {0, 1}*~ assign the weight function

p: Sy —[0,1], p(w) = pwean ¥a (1 — p)eeay 1 7ws),

This means assigning multiplicatively weight p, respectively (1 —p), to
every 1, respectively, every 0. Note, that this is not uniform weight
assignment. Again, by taking the infinite volume limit N — oo,
An — Z% the probability measure extends canonically to the set Q
of infinite configurations. After some very nice combinatorial argu-
ments we can conclude that (in two and more dimensions) there exists
a critical threshold value p, € (0,1) such that the probability that the
origin is connected to infinity by an open path is zero for p < p, and
positive for p > p.. This is Hammersley’s observation, with which the

story of percolation theory started.

We conclude this subsection with the

Definition 1 Probability space is the triplet (Q,F,P). Q is the sample
space. F C P(Q) is the sigma-algebra of events satisfying azioms (Ai),(Aii)
and (Aiiib). P : F — [0,1] is the probability function, satisfying azioms
(Pi) and (Piib).

1.2 Some elementary facts

Given three events A, B, C € F, by additivity of probability and elemntary

manipulations with sets we find
P(AUB)=P(4) + P(B) - P(ANB)
or
P(AUBUC)=P(4)+P(B) +P(C)
—-P(ANB)-PBNC)—P(CNA)+P(ANnBNCQO).

The following theorem extends these formulas to arbitrary number of

events. The proof is elementary combinatorics.



Theorem 2 The Sieve Formula.
Let Ay, Ao, ..., A, be events of the probability space (0, F,P). For I C
{1,2,...,n} denote Ay := (\;c; Ai- The following identity holds:

P(J4a)= > )" Ppay). (1)
=1 Ic{1,...,n}
Proof.
The proof goes through induction on n. For n = 1 the formula is clearly

true. The induction step goes as follows:

n+1 n
P(J 4) =P((J 4) U Ans1)
i=1 i=1
=P(|J4) +P(4n1) - P(({J 4) N Anya)
i=1 i=1
=P(|J 4) + P(4ns1) —P(J(4i N Anp1))
i=1 i=1
= Y ()T PAN+P(Ann)
Ic{1,...,n}

- Y () P(ArN App))
Ic{1,...,n}

= > (=P,

Ic{1,...,n,n+1}

Problem I wrote N letters to N different friends, put them in NV envelopes.
Unfortunately I sealed the envelopes before writing names and addresses on
them. Now, I wrote the N names and addresses on the envelopes at random.
What is the probability that at least one of my friends will get the letter
intended to him? Also, find the asymptotics as N — oo.

More on sigma-additivity of probabilities. Axiom (Piib) is equivalent to

either one of the two statements of the following theorem.

Theorem 3 Monotone limits of measures.
Let A;, i =1,2,... be events of the probability space (2, F,P).

i) If A; C A;iq1 for any i (i.e. the sequence of events is monotone increas-
+ Y



ing) then

P J4) = Lim P(4;). (2)
im1

(ii) If Aj11 C A; for any i (i.e. the sequence of events is monotone decreas-

ing) then
o0
P(( 4) = lim P(4;). (3)
! i—00
i=1
Proof

(i) Apply countable additivity to the disjoint events By := Ay, Bj := A;j \
Aj—17 j == 2,3,...:

00 o0 n n
P(Z:LJ1 Aj) = P(Z:LJ1 B;) = nlggo;P(Bz) = zli;[g) P(Z:LJ1 B;) = n]ggop(An)_
(ii) Apply (2) to the complements, AS:
00 00
P(() 49 =1-P(J 49 = Jim (1 - P(49)) = Jim P40

2 Classical combinatorial and geometric problems
2.1 Classical combinatorial problems

Coincidence of birthdays.

Problem There are n = 23 randomly selected people in a company.
What is the probability that no two birthdays coincide? (Disregard leap
years. Give equal weights to all possible birthday assignments.)

Problem Distribute n distinguishable balls into r boxes. All distributions

equally likely. What is the probability that there will be at most one ball in

every box?

Clerely, the birthday problem is special case of the second one, with

r = 23, n = 365. We compute the probability by the classical formula

number of favourable assignments

robability =
P y total number of assignments



We get

P(no two balls in any single box) =

i)

Numerically, this gives that the probability that no two birthdays coincide
is slightly bigger than 1/2 for 22 people and slightly less than 1/2 for 23
people. Sort of surprizing.

Instead of using a calculator let’s approximate:

log P(. Zlog (1——) Zj ””_1)

where we have used log(1 + z) = z for small z. Thus we get
P (no two balls in any single box) =~ exp(—n(n — 1)/(2r)).

The approximation is reasonably good if n(n — 1)/(2r) < 1. It is worth
comparing the approximate numerical values gotten this way with the true

ones, for the birthday problem.

Sampling without replacement: Lottery

Problem In an urn we have M white and N black balls. We draw n
balls at random from the urn, without replacement (n < N + M). What
is the probability that among the n balls drawn there will be k£ white and

n — k black ones.

Notation: let n € N

{7

0 otherwise.

Again we apply the ‘uniform weight assignment’ — all possible outcomes are
equally likely. The total number of different outcomes of the experiment is

(M;LLN ), the number of favourable outcomes is (A,:[ ) (njf k)’ SO

BIGAN

P(k white and n — k black balls are drawn) =

This is the so called hypergeometric distribution. It arises naturally in

all cases of sampling without replacement. E.g., binary opinion polls. In



the Hungarian lottery system (five-out-of-ninety) the distribution of hits is
hsgs5(k), K =0,1,...,5. Prize is payed only for two and more hits. Com-
pute the probabilities hs g5 5(k), k =0,1,...,5.

As a byproduct we get the combinatorial identity

Zk k)\n—k n
valid for any M, N,n € N.

The Maxwell-Boltzmann distributions

The following problem has its origins in classical statistical physics. It
has many more applications in other areas.
Problem 7 distinguishable balls (labelled 1 to n) are distributed at random
between n boxes. All distributions are equally likely. Denote by v; the
(random) number of balls put in the j-th box, j =1,2,...,r.
(1) Given ki,ko,...,kr € N such that ky + ko + --- + k, = n, what is the
probability that of the event {v; = k1,10 = ko, ..., v =k }?
(2) Compute the probability of the event {v; = k}, where k € [0,n]. (That
is: disregard the rest of the boxes.)
(3) Compute the limit of this last probability, when n — oo, r — oo so that
7 = X € (0,00). (Many balls, many boxes, finite density.)

(1) The number of all possible distributions of the n balls in the r boxes
is r™. The number of distributions of balls, with k; balls in the j-th box,
j=1,2,...,r,isn!/(ki'ke! ... k) — this is simple combinatorics. We get

n!
o klky! LK,

As a byproduct we also get the combinatorial identity

n! n
> Elkg! .kl (5)

k1 ko, krelN
ki+--+kr=n

—n

P({Vl:kl,l/QZkQ,...,l/r,-:krr}) T

valid for any fixed n,r € N. (Prove it also drectly, by induction on r.)
(2) Obviously,

P({vy=k}) = > P({v) = kv =ko,..., v = k. })
ko,....kreN
ko+-tkr=n—k

_ n! n
> AT

ko,..okreN
kattkp=n—k

10



Using (5) with (r — 1) and (n — k) we readily find

- () (0) (-1

This is a particular case of the so called binomial distribution

n

bp;n(k) = (k)pk(l _p)nik’ k= 07 1725 <y T

(3) Straightforward computations yield:

. n\ (1\" 1\ " BeL
7",]%01—1?00 (k) (;) (1—;) =€ H ::p)\(k), k:0,1,2,....

n/r—A

On the right hand side we see the Poisson distribution with parameter .
This is a special case of the Poisson approximation of the binomial distri-

bution.
2.2 Classical geometric problems

Buffon’s needle.

TO BE COMPLETED

Bertrand’s paradox.

TO BE COMPLETED

3 Conditional probability and stochastic indepen-
dence

3.1 Conditional probability

The point is that partial information changes the probability of events

Example: In a population of N individuals there are Np females and
Ny males, where Ngp + Njyy = N. Np of them are lefthanders and Np
righthanders, where again N;, + Ngp = N. We also know that the number
of lefthanders among the females, respectively, among the males is Npy,
respectively, Nasr, where clearly Nry 4+ Npsr = N holds. We sample one
person at random from the population. What is the probability that the se-
lected person will be lefthander? What is the probability of the same event,

given the partial information that the selected person is female?

11



Each person from the population has equal chances to be selected, so
P (lefthander is selected) = Nz, /N. Given that the selected person is female,
this probablity will change: we compute it as fraction of favourable outcomes
within the possibilities reduced by the partial information given. That is:
Nrr _ Nrn/N
Np Nr/N
P (lefthander female is selected)

P(female is selected)

P(lh is selected given that f is selected) =

Example: Wimbledon finals are played by Boris Becker and Pete Sampras.
The player who wins three sets (out of max. five) is the champion. They
are equally good tennis players. The sample space is 2 = Q3 U Q4 U Qs5,
where §); contains those posible outcomes (of the full match) where j sets

were played. With obvious notations:

Q3 = {bbb, sss}

Q4 = {bbsb, bsbb, sbbb, ssbs, sbss, bsss}

Q5 = {bbssb, bsbsb, sbbsb, bssbb, sbsbb, ssbbb,
ssbbs, sbsbs, bssbs, sbbss, bsbss, bbsss}

The fact that they are equally good players id mathematically modeled by
the following assignment of probability weights:

p(bhb) = p(sss) = 5
1
p(bbsb) = --- = p(bsss) = 16
1
p(bbssb) = --- = p(bbsss) = 3

Explain why, without relying on the notion of stochastic independence, which

was not yet introduced. Consider the following events:

B := {Becker wins the match}
Bj := {Becker wins the j-th set}.

What is the probability that Becker wins the match? What is the probability
of the same event, given that he won the first set of games? Elementary

computations show that

P(B)= 5.

12



(This is not surprising, as we modeled the situation of equally good players.)
Now, assume that Becker won already one set. We have to compute the
relative weight of all outcomes where B occurs, whithin the event By. That
is:

P(Band B)) 3+5+3 11

PB. B = = [ —
(Beven B =""5py “133+8 " 16

We are ready now to define the notion of conditional probability

Definition 4 Let (Q,F,P)be a probability space and H € F an event of
positive probability, P(H) > 0. The conditional probability of an arbitrary
event A € F, given H 1is

P(ANH)

P(AIH) = —5n

The definition is very natural. It says that given H, the sample space is
reduced from 2 to H (outcomes falling in © \ H must be disregarded) and

we have to consider the relative weight of A within H.

Example: (American students are very familiar with this one.) Three boxes
are given, numbered 1,2,3. In one of the boxes a prize id hidden the other
two are empty. You want to win the prize. You point to one of the boxes.
I open one of the other two boxes, showing that it is empty. Now, you may
stick to your first choice or change your mind and choose the nother one.
What should you do? Set up a proper probabilistic (mathematical) model

and analyse!

3.2 Three easy statements

Multiplication of conditional probabilities: the tower rule. Let A;,
Ao, ..., A, be events in a probability space (2, F,P). Then the probability

of their joint occurence is expressed as:

P(A; N Ay NN Ap) = P(A)P(As | A))P(A3 | Ay N Ay) ...
P(An | A1 N Ay N Ay 1)

The proof goes easily through induction on 7.

Example: Urn models. Let ¢ and d be two fixed integers satisfying ¢ > —1,

d > 0. In an urn there are blue and red balls. Initially the number of blue,

13



respectively, red balls is (y, respectively, pp. (Assume [y + pp > 0.) We
draw one ball (at random) from the urn and replace it with ¢ + 1 balls of
the same colour and d balls of the other colour. (The total number of balls
in the urn changes by ¢+ d.) Continue doing this. (If ¢ + d < 0 stop when
the urn is empty.) What is the probability that the first three balls drawn
are blue, blue, red (in this order)?

Remark: If ¢ = d = 0 this is simply sampling with replacement. If ¢ = —1,
d = 0 this is sampling withou replacement. If ¢ > 0, d = 0 It is Pdlya’s
urn model. If ¢ = —1, d = 1 it is Ehrenfest’s urn model. Both have very

interesting behaviour and applications.

The theorem of complete probabilities.

Definition 5 Let (2, F,P)be a probability space. A (finite or countable)
partition of Q is a collection of events H; € F, j = 1,2,..., which

1. have all positive probability: for all j P(Hj;) > 0;

2. are pairwise disjoint: if j # k then H; N Hy = 0;

3. cover the sample space: U;H; = €.

Given a partition Hj, j = 1,2,..., the probability of any avent A € F

can be written as:

P(A) = ZP(A | H;)P(Hj).

The proof is completely trivial: it goes through (sigma)additivity of the
probabilities and plain application of the definition of conditional probabil-
ity.

Bayes’ Rule. Given a partition Hj, 7 = 1,2,..., and an event A, as-
sume we know the probabilities P(H;) of the partition elements, and the
conditional probabilities P(A | H;). It may be natural to ask about the con-
ditional probabilities P(H; | A). Think about Hj-s as possible (disjoint and
exhaustive) causes and A as consequence. Given that A occured, what are
the a posteriori probabilities of the different possible causes? The answer

is:

_ P(A|H;)P(H;)
PHNA) = S~ p0A] HyP(Hy)

The proof is again straightforward: plainly apply the definition of condi-

tional probability and the ‘theorem of complete probabilities’.

14



Example: A population consists of 60% females and 40% males. 5% of
males and 1% of females is colour-blind. A person is selected at random.
Given that (s)he is colour-blind, what is the probability that a male was
selected?

Applying Bayes’ rule we find (with obvious notations):

B P(CB|M)P(M)
PMICB) = 5GBanP@I) + PCB|F)PE)

B 0.05 - 0.40 10
~0.05-0.40 +0.01-0.60 13

3.3 Stochastic independence

Independence of two events. Let A and B be two events in the probability
space (2, F,P). Natural candidate for the condition of independence is
that occurence of one does not influence the (conditional) probability of the
other. I.e.

P(A|B)=P(4) and P(B|A) =P(B).
It turns out that these two are actually the same condition. Namely:
P(ANB)=P(A)P(B).

Example: Throw an unbiased die. Let A = {result is even} and B =

{result is multiple of 3}.

Example: (this is slightly more surprizng). Choose a random number w
(uniformly distributed) in the interval [0,1]. That is: The sample space is
2 =[0,1). The sigma-algebra of events is F = B the Borel algebra generated
by the natural topology (but do not worry about this). The probability is
the Lebesgue measure. This means that the probability of w to fall in any
fixed interval (a,b) C [0,1] is proportiaonal (equal) to the length of the
interval, P(w € (a,b)) = b — a. This is exactly what a standard random

number generator does. Now, write w in usual binary expansion:
o
w = 0.wiwowswy - - - = E w;j277. (6)
j=1

This is done in a canonical unique way if, e.g., we do not allow expansions

terminating with and infinite sequence of ones. Any other system (e.g.

15



decimal) would be equally good for this example. Let A = {first digit is 1},
B = {second digit is 1}. Prove that A and B are independent.

Independence of more than two events. Given three events A, B and
C, how should we define their independence? Is it suffitient to require that
any two of them are (pairwise) independent? No! In the last example take
beside A and B already defined, C = { sum of the first two digits is even}.
You easily check that any two of them are independent, but determine the
third!

The good definition is:

Definition 6 Let A;, j = 1,2,...,n be a collection of events in the prob-
ability space (Q,F,P). We say thet these are (completely) independent if

for any subcollection

VIC{L1,2,...,n}: P((4;) =[] P(4)). (7)

jeI jeI
Let Aj, 3 =1,2,... be a countable collection of events in the probability space
(Q,F,P). We call them completely independent if any finite subcollection

of them are completely independent.

Note that (7) contains 2" — (n + 1) algebraically independent equations!

Condition (7) can be written equivalently as

VIC{1,2,...,n}: P((4)n (49 =[Py [[PAS).

jel itl i€l 2
which is more symmetric in the events A; and their complements Af.

Modeling independent experiments by product spaces. Given n
probabilistic experiments modeled mathematically by the probability spaces
(Q1, F1,P1), (2, F2,Pa), ..., (0, Fpn,Pp). We want to model mathemat-
ically the situation when these are performed jointly and completely inde-
pendently. The natural choice is:
Sample space:

Q=07 x Qg X x Q.

Algebra of events:
.7:120'(.7:1 X]:Q Xoeee X]:n)

16



This means: the smallest (sigma-)algebra of subsets of 2, which contains all

subsets of the form
Ay x Ag X -+ X Ap, where A; € F;. (8)

(This object is well defined. You easily understand it in the discrete cases.
Do not worry too much about it in the continuous cases.)
Probability:

P:=P xPyx---xP,.

This means that for rectangular subsets of Q of the form (18) we define
P(A1 X AQ X e X An) = Pl(Al)PQ(AQ) .. Pn(An)

and extend this measure (canonically) to the whole (sigma)algebra F.
This procedure of defining product spaces as model of independent ex-

periments is starightforward and very natural.

Remark: Uniform measure on product spaces is the product of uniform

measures on the factor spaces. Look at the combinatorial and geometric

examples with uniform assignment of weights, with this remark in mind!

‘Hidden’ independence.
In the previous paragraph we spoke about modeling independence. Now

we show some cases where we find independence somewhat unexpectedly.

An example from number theory: For s € (1,00) define Riemann’s

(-function by the series:

The series is convergent for s > 1. Consider a random number X with

distribution
n—S

O

Given a standard random number generator, which picks random numbers

P(X =n) =ps(n) =

w, uniformly distributed in the interval [0, 1], we produce a random number
with distribution (3.3) by seting

X = X(w) := min{n : Zps(k) > wh.
k=1
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Check it! Now, for all prime numbers r, we define the event
E, := {X is divisible by r}.
What is the probability of the event E,.?

[e.e] [e.e]
k*S —S8
P(E,) = P(X = kr for some k € N} = Zps(kr) = Z T o,
= = )
Next we prove that the countable collection of events E,, r prime, are com-
pletely indepentdent. Indeed: given any finitely many primes r1 < ry <

--- < Ty, an identical computation yields
PE,NE,N---NE, )= (riry...ry) °* =P(E,)P(E,,)...P(E,).

This is sort of a surprize: there was no obvious a priori reason for this.
A well known classical result from elementary number theory is Fuler’s

formula

)'= I a-r).

T: r prime

Let’s see what is its probabilistic content.

II a-r—= = I a-P@&E)

r: T prime T: 7 prime
_ cy _ c
r: r prime r: T prime

= P(X is not divisible by any prime)

—P(X =1) = p,(1) = ¢(s)

We have used independence in the third equality.

Binary expansions revisited: (2, F,P)= ([0, 1], B, Lebesgue measure).
That is: w is a random number uniformly distributed in the interval [0, 1].
Write w in binary expansion, as in (6). It turns out that its binary digits
wj, 7 = 1,2,3,... are completely independent. (Not only the first two, as
already seen in a previous example.) This remark hints towards a deep
relation between analysis and probability theory. E.g. limit theorems for
sums of independent random variables (laws of large numbers, central limit
theorem, law of the iterated logarithm, large deviation theorems) will be

valid in real-analytic context.
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4 Random variables I.: single random variables
and their distributions

A random variable is a random number, i.e., a number asociated to the out-
come of a probabilistic experiment. Mathematically speaking, let (€2, F,P)

be a probability space. A random variable is a (measurable) map
£:Q—>NorZorRorC
Later we shall speak also about vector valued random variable
£: Q- R

This is nothing more than n real valued random variables, jointly defined on
the same probability space. We always assume that the random variable is
measurable. That is: inverse images of reasonable sets from the range (e.g.
intervals) are elements of F.

Given a real random variable, its distribution characterizes it completely.

The distribution of the random variable ¢ is the probability measure gener-
ated £ :(Q, F,P)— (R, B): for Ae B

pe(A) :==P(¢ € A) = P({w € Q: {(w) € 4}) (9)

If we know for any reasonable subset A of the range this probability then we
have a complete characterization of the random number. The sample space
does not play an essential role: random variables difined a very different
sample spaces (associated to very different experiments) but having the same

distribution are the same.

4.1 Discrete distributions

First we speak about N- and Z-valued random variable. Concretely, we shall
formulate things for N-valued variables. Everything is easily tranposed to Z-
valued random variables (or to random variables with some other countable
range).

Given

£E:Q—-N

its distribution density is
fe:N=[0,1],  fe(k) =P =k) =P({w € 2: {(w) = k}).
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The discrete distribution density f¢ has the property
> felk) = 1. (10)
k

This is nothing else, but (sigma)addititvity of probabilities. In general,
a funcion f : N — [0,1] with property (10) is called discrete distribution
density. Given a discrete distribution density one can easily define a proba-
bility space and a discrete random variable defined on it which fhas the given
function as distribution density. Indeed: define the (cumulated) distribution

function

n—1
F:N—=[0,1, F(n)=>_ f(k),
k=0

and let (2, F,P)= ([0, 1], B, Leb.), that is: let w be a random number uno-
formly distributed in the interval [0, 1] and define

¢(w) :=sup{n: F(n) < w}.

It is easy to check that P(( =n) = F(n+ 1) — F(n) = f(n).

We continue with a list of most important discrete random variables.

Indicator, IND(p): The random variable takes on two possible values, 0
and 1. Tts distribution has one fixed parameter: p € [0,1]. The distribution
density is:

P((=0)=1-p, P(¢=1)=p.

The random variable indicates whether an event (with probability p) occured
or not. Sometimes we shall interpret £ = 1, respectively, £ = 0 as success,

respectively failure.

Hypergeometric, HY G(M, N, n): This is the distribution of the result
in sampling without replacement. M, N.n € N with n < M + N are fixed
parameters. Let M white and N black balls be in an urn. We draw (without
replacement) a random sample of n balls. Let ¢ denote the number of white

balls drawn. We have seen, see section 2.1, that the distribution density of
¢ is

M\( N
(k) Gs)

2"

P(fzk): = hM,N,n(k)a k:0,1,2,...,n.

(The convention (4) for the binomial coefficients is always used.)
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Binomial, BIN(p,n): The parameters n € N and p € [0, 1] are fixed. We
perform n identical and independent experiments. Each experiment results
in ‘success’ with probability p, or ‘failure’ with probability 1 — p. Let £ be
the number of successes among the n independent trials. It is easily checked
that the distribution density of ¢ is

P(¢=k) = (Z)pk(l —p)" P =bya(k),  k=0,1,2,...,n.
Relation (10) is easily checked.
Let M, N € N be the number of white, respectively black balls in an urn.
Putp=M/(M+N),1—p= N/(M+ N) then £ of BIN(p,n) distribution
models the random number of white balls drawn in n consecutive trials if
after each trial we replace the ball. This experiment is usually calles sampling

with replacement. Examples abund.

Convergence of HY G(M, N,n) to BIN (p,n). If the numbers M, N of white
and black balls in the urn is very large compared with the number n of
balls drawn then there is no significant difference between sampling with or
without replacement. Mathematically speaking, one can easily prove that if
M,N — oo sothat M/(M+N) — p (and, consequently, N/(M+N) — 1—p)
then for any n € N and k € {0,1,...,n} fixed

h'MyNa” (k) - bpan(k)'

Poisson, POI(A): The parameter A € (0,00) is fixed. Take the binomial
distribution BIN(p,n) and perform the limit: n — oo, p — 0 so that
np — A € (0,00), keeping k fixed. Taking this limit.

k—1
1 _ J
= E(np)'“(l —p*(1—-p)F ]~ 5)
[ s
)\k
— e =ipy(k), k=0,1,2,....

The Poisson distribution describes a situation when the probability of suc-
cess of every single experiment is negligeably small, but sufficiently many
experiments are performed, so that the overall probability of a fixed number

of successes is finite.
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Examples. Compare the binomial distribution and its Poisson approxi-
amtion in the following two cases:
(1) We throw a fair die six consecutive times, ¢ is the number of aces we
get.
(2) We buy one lottery ticket (‘5-out-of-90’ system) every weak of a whole
year. At least two hits is success. Denote by & the number of succsses during
the year.

Further examples abund!

Geometric (or negative binomial), GEO(p): Independent and identical
experiments are performed with probability of success, respectively, failure
p, respectively, 1 —p. (Bernoulli trials). Let £ denote the number of failures

suffered before the first success occurs. Easy computations show:

Pé=k)=1-plrp=1g,(k), k=0,1,2,...

A remarkable characteristic property of the geometric distribution is its
ever-freshness. This means that, if € is a geometrically distributed random

variable, then for any kg > 0
Pl =ko+k[E> ko) =P(§=k).

Prove this formula! If we interpret ¢ as a random waiting time, then the
amount time already spent with waiting does not influence whatsoever the
distribution of the remaining time to wait. (Think about waiting for the
tram: no matter how long you had already spent in the station, the dis-
tribution of the time you still have to wait is the same.) The geometric
distributions are the only N-valued discrete distributions with this remark-
able property. (See also the ever-freshness of the exponential distributions.)

Examples abund!

4.2 Distribution functions — in general

Given a real valued random variable ¢ : Q — R, its distribution is the
probability measure yg on R defined in (9). We define its (cumulative)

distribution function as

F¢:R —[0,1], Fe(z) =P <z) =P({w € Q:{(w) < z}).
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As there is a simple one-to-one correspondence between distributions and
distribution functions on R (see below) we shall use interchangeably the two
notions.

The distribution function F¢ has the following primary properties
(i) It is monotone non-decreasing: if z <y then F¢(z) < F¢(y) (This prop-
erty follows from addititvity of probability.)

(ii) imy,_ F(z) = 0 and lim,_, o F(z) = 1. (These properties follow
from (3), respectively, (2) in Theorem 3)

(iii) It is continuous from the left: for any = € R, limy ~, Fe(y) = Fe(x).
(This property also follows from (2), Theorem 3.)

Given a function F : R — [0,1] having the properties (1)-(3) above,
one can construct a probability space (2, F,P) and a random variable £ :
Q — R which will have the (cumulative) distribution function F. Indeed,
let (2, F,P)= ([0,1], B, Leb.), that is, let w be a random number uniformly
distributed in the interval [0, 1] and define

¢ =¢&(w):=sup{z: F(r) < w}.

It is easily checked that P(§ < z) = F(z). A funtion F' : R — [0, 1] satisfying
conditions (i)-(iii) above is called probability distribution function. There is
a one-to-one correspondence between probability distribution functions and
regular Borel probability measures on R:

Given a probability distribution function F' define for a < b
vi([a,b)) := F(b) — F(a)

and extend pp to all Borel measurable sets, by standard procedures.

Given a probability measure u, define

F(@) = p((~o0,7)).

Due to this one-to-one correspondence we are allowed to use the two notions
interchangeably.

We call z € R an atom of the probability distribution function F, if
AF(z) := F(z+) — F(z) > 0, or, equivalently if yr({z}) > 0. Denote the
set of atoms of F

Ap:={z e R: AF(z) > 0}.

It is easy to see that for any probability distribution function F' the set Ap

is at most countable. (Prove this!)
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Definition 7 (i) The probability distribution function F is pure point if
and only if for any z € R

F(z):= Y  AF(@).
' €Ar, y<z

This is equivalent to the corresponding probability distribution up being to-
tally concentrated in the set of atoms. If the set of atoms does mot have
points of accumulation we call F' (and pp) discrete.

(ii) The probability distribution function F' is continuous if it has no atoms
at all, i.e., Ap = 0. Equivalently, the corresponding probability distribution
ur does not give positive weight to any single point in R. In this case F is
indeed continuous function.

(iii) The probability distribution function F is absolutely continuous if there

exists a measurable function f : R — [0,00] such that for any z € R

Fo) = [ " )y,

(This is Lebesge integral.) In terms of the distribution: the measure pp is
absolutely continuous with respect to Lebesgue measure. The function f is
called density function of F' (or ur).

(iv) A probability distribution function which is continuous, (Lebesgue) al-
most everywhere differentiable with F'(x) = 0 (Lebesgue) almost everywhere,
is called continuous but singular. In terms of the distribution: up is con-

tinuous but singular with respect to Lebesgue measure.

Remarks. (1) The set of atoms Ap is at most countable. (Prove it!)

(2) In the definition of continuous distributions it seems tautological to say
that in this case ‘F is indeed a continuous finction’. But this is not the case:
a priori this is a different notion of continuity.

(3) In the absolutely continuos case: the density function f a fortiori satisfies

F(z) = /_oo f(y)dy =1.

(4) In the absolutely continuous case: it is a fact (prove it!) that if f; and
f2 are density functions of the same distribution then f; = fo (Lebesgue)

almost everywhere.
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(5) Still in the absolutely continuous case: F is (Lebesgue) almost every-

where differentiable and almost everywhere

(6) Cantor’s function (sometimes called ‘the Devil’s staircase’) is a typical

example of continuous but singular function.

Theorem 8 Lebesgue’s decomposition theorem.

Every probability distribution function F' is uniquely decomposable into con-
vex combination of a pure point, an absolutely continuous and a continuous
but singular part. ILe., there are three numbers p,q,r € [0,1] such that
p+qg+7r =1, a discrete probability distribution function Fy, an absolutely
continuous probability distribution function Fy. and a continuous but sin-
gular probability distribution function F,s, so that F = pF,, + qF,c + rF.

The decomposition is unique.

4.3 Absolutely continuous distributions

The density function (of an absolutely continuous probability distribution

function) has the primary property

/_Oo fly)dy = 1. (11)

A measurable function f : R — [0, co] with this property will be called prob-
ability density function. A probability density function defines an absolutely

continuous probability distribution function by

F(z) = /w f(y)dy.

Linear transformations of random variables. Let & be a random variable,
a > 0 and b € R fixed (deterministic) numbers and define 7 := af + b. If
F is the distribution function of &, then the disstribution function G of 7 is

simply expressed as

Gly) =P <y) =Pla +b<y) =P < (y—b)/a) = F((y —b)/a).

If the distribution F' is absolutely continuous, with density f, then so is G

and is density g is expressed as:

9(y) =G'(y) =a ' f((y — b)/a).
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Definition 9 We say that two distributions, say F and G, are of the same
type if there are two numbers, a € (0,00) and b € R, such that F(z) =
G(az+Db). (Le. if the random variables having these distributions are related
by a regular affine transformation.) It is straightforward to check that this

defines an equivalence relation in the set of distribution functions.

The most common absolutely continuous distributions are:

The uniform distribution, UNI(a,b): Fixed parameters are —oc < a <

b < 0o. The distribution function is

0 ifz<a
Fz):=4 27% fa<az<b
b—a
1 ifb< x.

The density function is
0 if x ¢ [a,b]
fla)=9 1
b—a
The standard choice is a = 0, b = 1. If € has distribution UNI(0,1) then
n := (b — a)¢ + a will have distribution UN1(a,b)

if z € [a,b].

The exponential distribution, EX P(\): The parameter A € (0,00) is

fixed. The distribution function is

{ 0 if 2 <0

F(z) = 1—e™ ifz>0

The density function is
0 ifx <0
f(z) = { e ™™ ifz >0

The standard choice is A = 1. If ¢ has distribution EXP(1) then n :=
A~ 1€ will have distribution EX P()\) Remarkable property of the exponential
distribution is its ever-freshness: let ¢ be a random variable distributed
according to EX P()), then for any 2o > 0 and z > 0

P >zo+z|§>x0) =P(§ > 1)

(Prove this!) The exponential distributions are the only continuous dis-
tributions with this remarkable property. (See also ‘ever freshness’ of the

geometric distribution.)
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Normal or Gaussian distributions, N(m,o0): Now m € R and o €

(0,00) are fixed parameters. The distribution function is

= /;f(y)dy

e~ (z—m)/(20°)
V2ro

The standard choice is m = 0, ¢ = 1 and we shall denote the standard

with density function is

fz) =

normal density function
efx2/2
) =
Plr) = 7=

and the standard normal distribution function

20) = [ ey

—00

If ¢ is a random variable with distribution N(0,1) and 7 := ¢€ + m then 7
has distribution N(m, o).
One proves [ o(z)dz =1 by

(/_Oo ) // dxdy——/%/ e Prdrdd = 1.

The Cauchy distribution, CAU(m,7): m € R and 7 € 0,00) are fixed

parameters. The distribution function is

1 - 1
F(z) = ;arctg (m Tm> +3

with density function

f(:L‘) ::l T 2

7124 (z —m)
The standard choice is m = 0, 7 = 1. If £ is a random variable with

distribution CAU(0,1) and 7 := 7€ +m then 1 has distribution CAU (m, 7).

Transformations of random variables. Let ¢ be a real valued random variable
and 9 : R — R a measurable map. Then 7 := () is also a random variable.
If € has absolutely continuous distribution F', with density f and the map
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is piecewise smooth and strictly monotone then the distribution G of n will
be absolutely continuous, too. Its density g is expressed in terms of f and

the map 1 as follows:

f(z)
s vy V'O

This formula is nothing else but the formula for change of variable under an

intergral sign. Here is the simple (two lines) proof for v strictly increasing:

Gly) =P(n<y) =P <y)=PE <y (y) =F@ ' (y))

—1
o) = G't) = P 0) = o W) v ) = S

In the last step we have used the formula of differentiating the inverse func-

tion. The general case is done very similarly, piecewise on the strictly mono-

tone (invertible) and smooth pieces of 1.

The log-normal distribution, LN(m,c): Fix the parameters m € R
and o € (0,00). Let £ be a random variable of distribution N(m, o) and
let  := exp(£). The distribution of 7 is called log-normal distribution of
parameters m and o. Applying formula (4.3) with ¢ (z) := €* we find the

density function of the log-normal distribution:

0 ifz <0
f(@) = L exp{—(Inc —m)?/(20?)} ifz<0

2mox

This distribution also arises in some practical applications.

5 Random variables II.: expectation, variance, mo-
ments, etc.

A distribution function is a very complicated object. Try to characterize it
with a few characteristic numerical data. The two most important ones are

the centre or and the dispersion, diffuseness of the distribution.

5.1 The expectation.

This is the most natural parameter for characterizing the centre of the dis-
tribution. It is analogue to the centre of mass for a classical distribution of

matter. The expectation is the weighted average.
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Definition 10 Let F be a dsitribution function. If
o
/ |z|dF(z) < oo (12)
—0oQ
then the centre of mass or mean value of the distribution F is defined as
o
mp = / zdF(z). (13)
—00
(These are Riemann-Stieltjes integrals on R, with respect to the probability

distribution function F.)

In case of discrete, respectively, absolutely continuous distributions (12)

and (13) are written as
Z |z|AF(z) < oo, mp = Z zAF(z),
T€EAR z€AFR

respectively,
o0 [e.e]
/ |z| f(z)dz < oo, mp 1= / zf(r)dx.
—00 —0oQ0

Definition 11 Let & be a random variable defined on the probability space
(Q7f7 P)' If

/mwwm@0<w, (14)
Q

then we define the expected value or expectation of the random wvariable &

E@wzlgwMPwy

(These are Lebesgue inegrals over Q, with respect to the probability measure
P.)

Now, it is straightforward to see that if £ is a random variable and F
is its distribution function then conditions (12) and (14) are equivalent and

E(¢) = mp. So, we shall use the two notions exchangeably.

Examples: we compute the expectation/mean value of the various distri-
butions encountered so far.

Indicator:
E()=0(1-p)+1p=p.
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Binomial, BIN (p,n):

Poisson, POI()):

Geometric, GEO(p):

Normal, N(m,o):

1 o0
E(f) = ———
(©) V2ro? /—oo
Cauchy, CAU (m, 7):

B = [ & lelde = o 1

oo T T2 + (z —m)

Warning: mean value of the Cauchy distribution (or: the expectation of a

random variable having Cauchy distribution) is not defined!

Expectation of transformed random variable. We have seen that if
¢ is a random variable with distribution function F' and ¢ : R — R is
a measurable map then 7 := (£) is also a random variable. Denote its
distribution function by G. If (12) holds for G (or, equivalently, (14) holds

for n) then the expectation of 7 is defined by

zexp(—(z —m)?/(20%))dx

E(r) = / " yda(y).

—00
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By change of variable this turns out to be

E(7) = mg = / Zz/)(x)dF(x),

defined if and only if
(o]
/\mmwm<w.
— 0o
In case of discrete, respectively, absolutely continuous distributions these

formulas are

Z % ()| AF (2 E(n) =m¢g = Z P(z)AF (z

TEAR z€Ap
respectively,

[ e <o, Bo=ma= [y

Example. Log-normal, LN (m,o):

E(§) = \/2:;7 /00 exp(z) exp(—(z —m)?/(20%))dz = --- =

5.2 The variance.

Another most important numerical characteristic of a distribution is its dis-

persion/diffuseness.

Definition 12 Given the distribution function F, if

o
/ #2dF (z) < oo, (15)
then we define the dispersion of the distribution F, as
[e o]
a%:/(wwm%m@ (16)
—0o0

(The integrals are Riemann-Stieltjes.)

In case of discrete, respectively, absolutely continuous distributions (15)

and (16) are written as

Z |z|?AF(z) < o0, 0% = Z (x —mp)?AF(z),

TEAR rEAR
respectively,
o o
/ |z f (x)dz < oo, 0% = / (z —mp)?f(z)dz.
— 00 —0oQ
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Definition 13 Let & be a random variable defined on the probability space
(Q,f7 P)' If

/ £(w)PdP (w) < oo, (17)
Q

then we define the variance of the random variable & as

Var(©) i= [ (6(w) — B(§)*dP(w).
(The integrals are Lebesgue.)

Clearly, if € is a random variable and F' is its probability distribution
function then conditions (15) and (17) are equivalent and Var(¢) = o%. We
shall use the two terms exchangeably.

By simple algebraic manipulation under the integral sign we find the

identity
o
0% = / 2dF (z) — m?,

—00
or, equivalently

Var(¢) = E(¢?) — E*(€).

Examples: we compute the variance/dispersion of the various distributions
encountered so far.

Indicator:
Var(¢) = 0(1 — p) + 1p — p* = p(1 — p).

Binomial, BIN (p,n):

n n e
Var(¢) =) K’ <k>pk(1 =p)"F = (np)? = - =np(1 —p).
k=0
Poisson, POI()\):
— = 2 —)\Ak 2 _ —
Var(¢) =) k% TN ==
k=0
Geometric, GEO(p):
.- (1-p)° 1-p

Var() = Y R(1-p)p - L ==

k=0
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Uniform, UNI(a,b):

T N CE R (e
Var(f)—b_a/agcda:— TR
Exponential, EX P()):
Var(¢) = \ / e Mdy — A =... =\
0
Normal, N(m,o):
00 ) e—(m—m)Q/(202) )
Var(¢) = w2 L = =2
(0= [ ommP e —do ==

Cauchy, CAU(m,T): the expectation was already not defined!

Theorem 14 Steiner’s Theorem.

Let F be a distribution function for which (15) holds. Define M : R — R,
by
o

M(u) = / (z — u)2dF ().

—00

Then M (u) is minimized (uniquely) by u=mp and M(mp) = o%.

The proof is trivial.

5.3 Higher moments, exponential moments, etc.

Absolute moments and moments. Given a random variable ¢ and its

distribution function F', the x-th absolute moment, x > 0, is:

B(er) = [ lafdr) el neRs.

-0

By Jensen’s inequality, if k1 < k9 then
E(|¢[*) < (B(Jé]=))=/".
For k = 1,2,... if B(|¢|¥) < oo then the k-th moment of ¢ is

x

E(¢F) :/ *dF(z), k=1,2....
— 00

Exercise. Compute the absolute moments and moments of the following

distributions: UNI(—-1/2,1/2), EXP(1), N(0,1).
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Factorial moments of N-valued r.v.-s. If £ is an N-valued random

variable, its k-th factorial moment, k = 1,2..., is
[e's) k—1
BEE-1)...¢~k+1) =) PE=n)[[(n ).
n=0 7=0

Exercise. Compute the factorial moments of the following distributions:
BIN(p,n), POI(\), GEO(p).

The exponential moment. The moment generating function is
o0
Z:R— (0,00,  Z(s) = Bexp(st)) = / AR (7).
—0o0
We say that the random variable has exponential moments if there exist
8% < 0 and s* > 0 so that Z(s) is finite for s, < s < s*. In this case the

function s — Z(s) is analytic in (s, s*) and its power series is
®©  k
Z(s) = Y 2 BlE).
k=0
The logarithmic moment generating function

J: R — (—o0,00], J(s) :=log Z(s)

has important réle in large deviation theory. Note, that s — J(s) is analytic
and convez in (s, s*):
o0 o
J'(s) = / s2dF(z) — ( / 2dFy(z))2 > 0,
—0o0 —0o0
where F is the exponentially biased probability distribution function
T
Fy(s) = Z(s)"! / VAR (y).
—0o0
Remark: Compare with the formalism of statistical physics.
Exercise. Compute Z(s) and J(s) for the following distributions: BIN(p,n),
POI(\), GEO(p), UNI(a,b), EXP(A), N(m,o).
The generating function. For N-valued random variable ¢ with discrete
probability density function p(n) := P({ = n) we define the generating

function

$:[0,1] = [0,1],  (s) :==E(s*) = s"p(n).
n=0

34



The function s — 1)(s) extends analytically to the open complex unit disc.
We shall say much more about the generating function in a subsequent
section.

Exercise. Compute the generating function of the following N-valued dis-

tributions: BIN (p,n), POI(\), GEO(p).

The characteristic function. Given an arbitrary random variable ¢ with

distribution function F, its characteristic function is

$:R— C, B(t) == B(e™®) = E(cos(t€)) + iE(sin(t€))
= / h e dF (x).

It is actually the Fourier-Stieltjes transform of the distribution function F'.
It is well defined for any F and ¢ € R It is probably the most powerful
analytic tool of classical probability theory. We shall say much more about
it in a subsequent chapter.

Exercise. Compute the characteristic function of all concrete distributions

encountered so far.

5.4 Conditional expectation

Let (2, F, P) be a probablity space and £ :  — R a random variable defined
on it. Let H € F be an event of positive probability, P(H) > 0. Denote by
1y the indicator variable of the event H:
w={ ) bee
Definition 15 The conditional expectation of &, given the condition H is
B(Els) _ Jué@)dP)
P(H) P(H)

The theorem of complete probabilties transposed to conditional expec-

E({[H) :=

tations is easily checked:

Theorem 16 Theorem of complete expectations.

Let Hj, j = 1,2,... be a finite or countable partition of the probability space
(Q,F,P). If the expectation of the random wvariable & : Q@ — R is defined
then

E(¢) =) E(¢|H;)P(H,).
J
Examples and applicatins abund!
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6 Random variables III.: joint distribution of ran-
dom variables

6.1 Jointly defined random variables and their distributions

Usually we are concerned with more than one single (random) number as-
signed to a random experiment. Let the n random variables &, ..., &, be
jointly defined on the probability space (2, F,P):

€1, ..., 6n: Q> R or, equivalently, £:= (&1, ...,&):Q — R

We assume, of course, that each map is measurable from 2 to R, which is
the same as saying that the last map is measurable form  to R".

The joint distribution of these random variables is the probability mea-
sure on (R", B) defined for A € B by

Per,en(A) :=P((&1,..., &) € A)
P({we Q: (&1(w),---,8n(w)) € A}).

Their joint distribution function is the function Fy, ¢ :R® — [0,1]

F&,---,ﬁn(xla"' ,iL‘n) = P(fl < Ty ... ,fn < iL‘n)
=P({w e Q:{(w) <1, ... ,&n(w) < zn}).

We’ll see soon that, again, there is a natural one-to-one correspondence
between distributions ans distribution functions on R", so the two notions
will be used interchangeably.

Given the random variables &1,...,&,, their joint distribution function
F, ..¢, has the following (easy to check) primary properties:
(i-¢) The map (z,y,...,2z) — Fg, ¢, (x1,...,T,) is monotone nondecreasing
in each variable. This is immediate: it follows from positivity and additivity
of the probability.
(ii) For all any (z1,...,2,) € R" and j =1,2,...,n

lim Ffl,---,fn (1‘1, e ,.’I,‘,

" LR
x;—>—oo J

and



These follow from (3), respectively, (2) of Theorem 3.

is continuous from the left in each variable: for

n

(iii) The function Fg, ¢
any (£1,...,op) ER" and j =1,2,...,n
,hm Ffl,---,§n (.’L‘l, e ,.Z‘;- e ,.Z‘n) = Ffl,---,fn (.1‘1, [ ,.Z‘n)
©; /T

This follows again from (2) of Theorem 3.

Property (i-¢) is immediate but it is not sharp. Actually the stronger
monotonicity property of Fg, . ¢ holds:
(i) For any (z1,...,z,) € Rand (z),...,2)) e Rwithz; < i, ..., z, <z
and a,...,a, € {0,1}

> (—1)Fianx (18)

Q1 yeenyn =0

Fe . en(lonzr + (1 — o)z, ..., anzn + (1 — an)zy) > 0.

This property follows directly from the sieve formula, (1) of Theorem 2
(check it!): it means that

P(fl € [wlaxll)a s afn € [.’En,.’L';l)) > 0.

Of course, it implies the simple monotonicity formulated as property (i-€).

Given a function F' : R* — [0, 1], with properties (i), (ii) and (iii) one can
construct a probability space (2, F,P) and random variables ({1,...,&,) :
Q2 — R", so that the joint distribution function of (¢1,...,&,) is exactly F.
A function F' : R* — [0,1] possessing properties (i), (ii) and (iii) will be
called probability distribution function (of n variables).

There is natural a one-to-one correspondence between probability dis-
tribution functions F' : R" — [0, 1] and probability measures (probability
distributions) on (R™, B) realized by the following identifications.

Given the probability measure p on (R*, B), let F, : R* — [0,1],

Fy(zi,...,2n) = p((—o0,z1) X +++ X (—00,zy))

Given the probability distribution function F' : R" — [0, 1] let the measure
of rectangles (z1,z}] x -+ X [z3,23), 1 < &, ..., zp, < z/, be given by
(18) and extend it to all Borel measurable sets A € B by standard measure-
theoretic procedures. By this one-to-one correspondence we are allowed to

interchange freely the two objects.
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Marginal distributions. The joint distribution F¢, .. contains all in-
formation about the random variables. In particular we may ask about the
distribution of each variable separately. It is straightforward that these (one

variable) distribution functions are retrieved from the F¢, ., by

ng( j) = lim Fe ¢ (z1,...,2n)

it i
These are called the one dimensional marginal distributions of the joint
distribution F, . .. Warning: the full collection of the one-dimensional
marginal distributions contains much less information than the joint distri-
bution.
For any subcollection 1 <141 < --- < i, < n one can obviously define the

marginal distribution of the random variables &;,,..., &,

Discrete and absolutely continuous distributions on R”.

The point (z1,...,2,) € R" is an atom of the distribution function F' if the
limit of the expression in (18), as = \, 7, j = 1,2,...,n, is positive. This
means exactly that the corresponding measure up gives positive weight to
the single point set {(z1,...,2,)}. As in the one-dimensional case, we shall
denote by Ar the set of atoms of F' and by AF(x1,...,zy) the weight of

the atom.

Definition 17 (i) The probability distribution function F : R — [0,1] is
pure point if for any (z1,...,x,) € R?

/ /
F(zi,...,2p) = E AF(zy,...,z,).
(m’l ..... zp)EAR
z) <T15e0 <

This means exactly that the whole weight of the distribution is concentrated
on the set of atoms. We call discrete a pure point distribution if Ap does
not have points of accumulation.

(i) The probability distribution function F' : R™ — [0,1] is called continuous
if Ap = 0, i.e., no single point gets positive weight. In this case the function
F' is indeed continuous.

(iii) The probability distribution function F : R — [0, 1] is absolutely con-
tinuous if there exists a measurable function f : R* — Ry such that for any
(Z1,y...,2p) ERY,

T1 Tn
F(xl,,xn):/ / f(al,...,zh)da! ... dzl,.
-0

-0
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The function f is called the density of the distribution.

(iv) The probability distribution function F : R® — [0,1] is continuous but
singular if it is continuous, (Lebesgue) almost everywhere n-times differen-
tiable and O"F/(0zy ... 0x,) = 0 (Lebesgue) almost everywhere.

Remarks. (1) The set of atoms Ap is at most countable. (Prove it!)

(2) In the definition of ‘continuous’ distributions it seems tautological to
say that ‘F' is indeed continuous’. But this is not the case: a priori this is
another notion of continuity.

(3) In the absolutely continuous case: the density function f a fortiori sat-

o o oo
/ / / F(@h,... 2l de) ... dzl = 1. (19)
—00 J —00 —0o0

A function f: R* — R, (19) will be called probability density function on
R™.
(4) In the absolutely continuous case: it is a fact (check it!) that if f; and

isfies

fo are density functions of the same distribution function F', then f; = fo

(Lebesgue) almost everywhere.

(5) Still in the absolutely continuous case: (Lebesgue) almost everywhere

o"F

N e

(6) Examples of continuous but singular distributions are measures concen-

trated on lower dimensional submanifolds. But wilder examples also abund,

see e.g. Cantor’s function for n = 1.

(7) Lebesgue’s decomposition theorem, Theorem (8), is transposed word-by-

word to the n dimensional case.

It is evident that all marginal distributions of a pure point, respectively,
absolutely continuous distribution, are pure point, respectively, absolutely
continuous. But: it may easily happen that the marginal of a discrete
distribution is pure point but not discrete, or the marginal of a continuous
but singular distribution is absolutely continuous. Construct examples of
this kind!

The densities of the one dimensional marginals of an absolutely contin-

uous n-variate distribution function F' are expressed from the density f of
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F, as follows
o0 o0
fj(xj):/ / F@r. . an)das ..., dj,. .. dz,
—0oQ — 00

Examples of discrete joint distributions.

The polynomial distribution, POLY N(p1,ps,--.,pr,n): Fixed param-
eters are r € N, p1,p2,...,pr € (0,1) withpy +p2+---+p, =1l and n € N.
Let a random experiment have r possible reults, say 1,2,...,r, with proba-
bilities p1,pa,-..,pr € (0,1), respectively. Perform n independent identical
trials of this experiment and denote by {; the total number of results j in the
sequence of experiments, where j = 1,2,...,r. Clearly, £&1+&+---+& = n.
Elementary combinatorial considerations yield the joint distribution of these

random variables

n
P& =k, l=ky,... .6 =k) = (kl Ky k )P]flpgz pl
b 9" *9 T

Where we use the conventional notation

n! if k1,ko,...,kr € {0,1,2,...,n}
(k kn k>:: kilkal. .. k! and k1 + ke +---+kr=n
L B2y e B 0 otherwise.

Sampling with replacement: Let Ni,Na,...,N, € N and denote p; :=
N;/(N1+ Nz +---+ N;). In an urn there are N; + Ny + - - + N, balls, N;
balls of colour j, j = 1,2,...,r. We draw (randomly) n consecutive times
one ball, record its colour and replace it. Denote by &; the number of results
j in this sequence of trials. The joint distribution of &1,&o,...,& will be

polynoomial with the given parameters.

Exercise: Find the one-dimensional marginal distributions of the polynomial

distribution. What are the higher dimensional marginals?

The polyhypergeometric distribution, POLY HY P(Ny, Ny, ..., N, n):
Fixed parameters are r € N, N;,Ny,...,N, € Nand n € N, with n <
N1+ Ny+---+ N,.

Sampling without replacement: Let N1, No,..., N, € N. In an urn there are
Ny + N3 + --- + N, balls, N; balls of colour j, j = 1,2,...,r. This time we
draw n < N1 + Na + --- + N, balls without replacing them. Denote again
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by &; the number of balls of colour j drawn in this sequence. Again, by

elementary combinatorial considerations we find

() () - (52)

P61 =ki,&o=ky,.... & =kr) = (N1+N2+-..+N).
T

n

Exercise: Find the marginals of the polyhypergeometric distribution.

Convergence of POLY HY P(Ny,...,N,,n) to POLYN(p1,...,pr,n):

If the number of balls of each colour is much larger than the number n
of draws then there should be no significant difference between sampling
with or without replacement. Intuitively this is very clear. Mathematically
speaking: Keeping n and k1, ks, . .., k, fixed, let N1, Na,..., N, — oo so that
N;/(N1+Na+---+N;) = p; € (0,1) (note that a fortiori: p1+pa+---+p, =
1). Then

(1) (i) (&)

n k1, k2 K
(N1+N2+---+Nr> (kl,kg,...,k)pl Py - Pr

n

Examples of absolutely continuous joint distributions.

The uniform distribution, U(D): The fixed parameter is a nice compact
domain D C R". By nice we mean that D is equal to the (topological)
closure of its interior. Let |D| be the volume of the domain D. The density
function is

. ‘l)|71 if (.’I)l,.’L‘Q,...,CCn) eD
f(CEI,iL'Q,-.-,-'En)_{ 0 if ($1,$2,...,$n)¢D

We have seen plenty of examples in the classical geometric problems.

The n dimensional normal (or Gaussian) distribution, N(m,C):
We use now vectorial notations: T := (acl,...,:cn)T € R" etc. The fixed
parameters are the vector m = (my,...,my)" € R* and the positive definite
real matrix C = (cij)i"j:l. Browse up your linear algebra notes for basic facts
about matrices, quadratic forms, positive definiteness etc.). The positive

definite matrix C is symmetric and regular (invertible). Denote its inverse
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matrix by A, which is itself positive definite. The two-dimensional normal

density function, with obvious notations, is

P, o) = ?;:r)‘: exp{—%(a‘c’—m)TA(f—m)} (20)

det A I

W eXp 4§ — =% Z (J,‘Z - mZ)AZJ(J)J - m]‘)
Prove that this is indeed a probability density function, i.e., check (19).
The standard choice is m = 0, C = I, i.e.,, Cij = &;. Let & = (£1,...,&,)
have distribution N(0,1) 5 := CY/2£ 417 then 77 will have N (17, C) distridu-
tion.

More later about the multivariate normal distribution.

6.2 Transformation of random variables

Please browse up your notes on multivariate analysis!

Regular transformation of random variables:
Let D C R™ be open and 9 : D — R be a smooth (differentiable) vector

field. Its Jacobian matriz is

J0 . R — Mpxn(R), Jﬁ(wl,...,xn) = %(xl,...
833]'

1] axn)-

(Here M, «,(R) denotes the space of n by n real real matrices.) The point
(z1,...,zn) € D is called regular, respectively, singular, if det J ’/7(361, ceeyTp) F
0, respectively, if det J’/;(xl, ..., Zy) = 0. The vector field 1;: D — R" is reg-
ular if all (zq,...,2,) € D are regular. A regular vector field zﬁ is invertible
on its range. The vector field 1/_; is piecewise reqular if D = D{UDoU---UDy,
such that 15|Dj, j=1,2,...,k are regular.

Let E = (&1,-..,&,) be n real valued random variable with absolutely
continuous joint distribution. Denote the density function of their joint dis-
tribution by f¢, ¢, Let % : R* — R™ be a vectror field and (M1yeesmn) =
7= @E(E) If ¢ is piecewise regular then the joint distribution of the ran-
dom variables 71, ...,n, will be absolutely continuous, too, and their joint

density function fy, . 5, will be

n

f§1 13 3:13 3 n)
Fotseein @15+ Yn) = - :
ot " Z | det J¥ (1, . . ,:cn)|

. _,

xX: :
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This formula is exactly Jacobi’s Theorem of classical multivariate analysis,
formulated for probability density functions.

Particular case: regular linear transformations. Let A € My «,(R) be a
regular n by n matrix and b € R and 7 = Ag + b. Then the density

function transoforms as

-,

f(@) = | det A" f{AT (& — B)).

Real functions of random variables:

Let &1,...,&, be n real valued random variables, jointly defined on the
probability space (€2, F,P) and denote by F¢, ¢ their joint distribution
function. Let ¢ : R* — R be a measurable function. Then & := 9(&1,...,&,)

is a real valued random variable. Its distribution function is expressed:

Fe(z) =P <z)=P(&,...,&) <)

/_ . /; ]1{1/’(w1,,wn)<w}dF§1,,§n (-’El, e ’a;'n)
= pgy,en (@15 20) ERY 1 9p(z1,...,m) <z})  (21)

This formula makes perfectly good sense, but it is rather unpleasant.
TO BE COMPLETED

6.3 Independence of random variables

Definition 18 The random variables &1, ... , &, are (completely) indepen-
dent if for any intervals I, ..., I, C R the events {&, € I}, ..., {& € I}

are independent. That is: if for any subcollection 1 <41 < -+ < ip < s
P(fil €Ly, ....&, € Iir) = P(EZ& € Ii1) .- 'P(gir € Iir)
In terms of the joint distribution function:

Theorem 19 Factorization of joint distribution of independent random
variables.
The random variables &1, ... , &, are independent if and only if their joint

distribution function factorizes:

Fe .. e.(x,y,...,2) = F¢ (z1) ... Fg, (zn). (22)
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If the joint distribution of €1, ... , &, is absolutely continuous, then they are

independent if and only if the joint density function factorizes:

f&,___,gn (.’171, .. ,.’L‘n) = f& (:El) R ffn (:En)

Theorem 20 Functions of independent random variables are independent.
Let &, ..., &, be independent random variables and ¥y, ..., ¥p : R = R
measurable functions. Then the transformed random variables m = 11(&1),

<y M =P (&) are also independent.

The proofs is these theorems are straightforward.

Examples.

(1) Let D = [a1,a!] x--- X [an, a},] be a rectangle in R™. It is straightforward
to check that the random variables &1, . .., &, with joint uniform distribution
on D, are independent.

(2) Let (&,...,&,) have normal distribution N(m,C) with C diagonal:

C;; = 026, j, Simple computations show that in this case (20) reads

n

@,y m) = [~ exp (—M> .

i V2mo; 207
That is: the random variables &1, ...,&, are independent Gaussians of ex-
pectation m; and variance O'JQ-, i=12,...,n.

6.4 Conditional distribution

TO BE COMPLETED

6.5 Expectation and covariance

Let &1,...,&, be n real valued random variables, jointly defined on the
probability space (2, F,P), and & := 9(&1,...,&,), where ¢ : R — Ris a

measurable function. By definition of the expectation:

E(¢) := /000 zdFe(x),

with the distribution function F¢ given by (21). By change of variable under

the integral we actually get
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Theorem 21 Expectation of real functional of several random variables.
Let & :== (&1, ...,&). The expectation E(&) is defined if and only if

E(|¢]) = B([¢(&1,---,80)D)
— /_00/_00 \zp(xl, ,xn)\ngl’___,gn(ml,...,a:n) < 0.

In this case

E(§) = E(®(&1,---,&n)) (23)

/ / ’lﬁ T1y---y n)dF&,...,gn(xla-“axn)

The proof relies on change of variable under the integral sign. We omit
this proof.
A first consequence of this formula is the simple but important fact is

that the expectation is linear:

Theorem 22 Linearity of the expectation.

Let &1,...,&, be random wvariables, jointly defined on the probability space
(Q,F,P) and aq,...,a, real numbers. Consider the random variable £ :=
a1éi + -+ andn. IfE(|¢]) < o0, j=1,...,n, then E(|¢]) < oo and

E(é) = E(aflfl + 4+ anén) = alE(gl) +eee anE(gn)

This follows immediately from (23) and linearity of integration.

Another simple consequence of formula (23) is thr following:

Theorem 23 Factorization of expectation of product of independent rv-s.

Let &, ... ,&, be random wvariables, jointly defined on the probability space
(Q,F,P) and define £ :=&1 - &o- -+ &n. IfE(|§]) < o0, j=1,...,n, then
E(|¢]) < o0 and

E({) =E({ & &) = B(G)E() - E()-
This follows directly from (23) and (??) of Theorem ?7.

Theorem 24 Schwarz’s inequality.
Let & and n be two random variables, jointly defined on the probability space
(Q,F,P). Assume E(£2) < oo, E(n?) < co. The following inequality holds:

[E(¢n)| < VE(§)E(n?)
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Proof.
Define f : R — R by f(A\) = E((€ + An)?). Then

0 < f(A) =E(£) + 2XE(¢n) + NE(n?).

This holds for all A € R only if the discriminant is non-positive: (E(£n))? <
E(¢2)E(n?), and the inequality is proved.

Definition 25 (i) Let £ and n be two random variables, jointly defined on
the probability space (Q,F,P). Assume E(£?) < oo, E(n?) < co. The

covariance of & and 7 is

Cov(¢,7) :=E((& —E(€))(n — E(n))) = E(én) — E(§E(n).
The correlation coefficient of & and 7 is

_ Cov(¢,n)
RE = Rar@Var()

We say that the random variables are positively/negatively correlated, re-

spectively, uncorrelated, iff their covariance is positive/negative, respectively,

zero.
(ii) Let &1, ..., &, be n random variables, jointly defined on the probability
space (Q, F,P). Assume E(f?) <0, j=1,...,n. Their covariance matrix

18
C:= (COV(fi,fj))ijl'

Remarks. (1) The covariance is the most important numerical indicatior of
two random variables influence on each other. ... ... Independence of ¢ and
7 imply that they are uncorrelated. The converse is not true: uncorrelated
random variables may well depend. Construct examples and counterexam-
ples!

(2) Note, that Cov(¢, &) = Var(§).

(3) Let a,b,c,d € R. Then Cov((a€ + b),(cn + d)) = acCov({,n) — this is
again straightforward.

(4) Schwarz’s inequality implies that

|Cov (&, n)| < v/ Var(¢) Var(n),
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and, consequently R(¢,n) € [—1,1].
(5) The covariance matrix is, by its definition, real and symmetric.
(6) Also, from Schwarz’s inequality it follows that the covariance matrix C is

positive semidefinite and, if there is no deterministic linear relation between

the random variables £1,...,&,, then it is positive definite. Indeed, given
any complex numbers z1,..., 2,
n n 2
Y zZiCov(é, &) = =B | D z(& —E())| | >0
ij=1 i=1

where equality holds only if Y " | zi(& — E(&)) = 0, almost surely.

Theorem 26 Variance of sum of random variables.

Let &y, ..., & ben random variables, jointly defined on the probability space
(Q,F,P). Assume E({?) <oo,j=1,...,n. Let S:=& + &+ -+ &,
Then,

n n -1
Var($) =) Var(&)+2) ) Cov(&;,¢)).
i=1 i=1 j=1

If the random variables are uncorrelated (in particular: if they are indepen-

dent)
Var(S) = Var(&).
=1

This is again elementary.

6.6 Sums of independent random variables: the convolution

Discrete convolutions.
Let £ and 1 be independent Z-valued random variables and let their

distribution be

f(k):=P(=k) g():=Pn=1.
Let ¢ := & +n. We want to express the distribution

h(m) :=P({ =m)
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in terms of f and g.

h(m) =P( =m) U{f k, n=m—k})

k=—o00

= Y PE=k n=m—k) ZP P(n=m—k)

k=—o0 k=—00

)
= Y f(k)g(m —Fk). = (f * g)(m).
k=—o0
In the third and fourth equalities additivity of the probability and indepen-
dence of ¢ and n were used, respectively. The last equality is the formal
definition of convolution of two discrete distributions defined over Z. If the
random variables ¢ and 7 are actually N-valued then so is ( and f, g, h van-
ish for negative values of their respective variables. In this case we get the

simpler expression:

h(m) = (f *g)(m) =Y f(k)

k=0
Let £7 and £y denote the space of all discrete distribution densities over
Z, respectively, N:

o0

Ez={f:Z—100,1: > f(k
k=—00

Envi={f:N=[0,1]:> f(k) =
k=0

Theorem 27 Convolutions ... .
The convolution is a binary operation in Ez and En. (Ez,*) and (Enx) are

Abelian (commutative) semigroups with the neutral element e, e(k) = do -

Proof.

Straightforward computations yield associativity and commutativity of the
convolution and the fact that e is indeed the neutral element. These are
only reflections of the facts that addition of integers is associative and com-
mutative, with 0 as neutral element.

Warning: (€7, *) (respectively, (En%*)) is by no means a group. There is no

inverse element defined! Explain why.

48



Examples.

Convolution of binomial distributions:
BIN(p,m)« BIN(p,n) = BIN(p,n +m).
Prove it! In particular,

BIN(p,n) =IND(p)« IND(p) *---« IND(p)  (n-fold).

Convolution of Poisson distributions:
POI(\) x POI(u) = POI(A+ p).

Prove it!
Continuous convolutions.

Let ¢ and n be two independent random variables jointly defined on the
probability space (Q, F,P). Denote their distribution functions F', respec-
tively, G. Define ¢ := £ + 7 and denote its distribution function by H. Then
H is expressed as follows:

o0 o0
H(z) = / Fz— y) dG(y) = / Glz — 5) dF (z). (24)

—0o0 —0o0
The formulas are intuitively quite clear — by discretization one can reduce
them to the discrete formulas presented in the prvious paragraph. Here is a

sketchy proof:
H(z)=P((<z)=P{+n<2)

=P<U U {ne[g%,%),«Lzmz;ff“”)})

m<oo k=—00

VR )

k=—00
L kok+1 1272 — (k+1)]
_n’}gnook_z:oop (”€[2m’ gm ) €< om )

- ngnwk_imp (77 € [2%, %)) P (5 < 127 ;T(n’f +1)] ))

_ ,,}E,noo Z P [2m 2 —27(nk—|- 1)J) (G(%) _ G(i)) -
k=—00

- [ Pe-vacw)

-0
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The first two equalities are just definitions. In order to understand the third
(and forthcoming) steps, DO make a picture! The fourth step is application
of (2) from Theorem 3. The fifth step is sigma additivity of probablities.
In the sixth step independence of ¢ and 7 is used. The seventh step is just
transcription in terms of the distribution functions F' and G. The ... stand
for standard analytic procedures: this is actually discrete approximation
of the Riemann-Stieltjes integral with respect to G. Here we have to use
continuity from the left of the distribution function F'

Theorem 27 has its natural extention: denote by r the space of distri-

bution functions on R.

Theorem 28 Convolutions ... .
The convolution defined in (24) is a binary operation in Er. (Egr,*)

is Abelian (commutative) semigroup with the neutral element E, e(x) =
]l(O,oo)(x)'

The proof of associativity, commutativity and neutrality of E(-) is im-

mediate.

If F and G are absolutely continuous with densities f = F’, respectively,
g = G' then so is H = F * G and the density h = H' is

we) = [ sty = [ sl - s

Examples.
Uniform: Let f(z) = 1[_y/9,1/9](7) be the density of the distribution
UNI(—1/2,1/2). Then

(f = f)(@) = (1= al) .
Check it and compute also f * f * f.

Normal:
2 2y _ 2 2
N(my,0%) * N(mg,05) = N(m1 + mg, o] + 03)

Check it! Use Gaussian integrals.

Cauchy:
CAU(ml,Tl) * CAU(mQ,TQ) = CAU(m1 + mao, 71 + 7’2)
Check it! Use complex integration and the theorem of residues.

In Definition 9 we defined an equivalence relation on the set &g.
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Definition 29 A class of distributions of the same type is called stable if
it 1s closed under convolutions. Le., if the sum of two independent random
variables of the same type is again of the same type. With slight abuse of
terminology we shall call a stable distribution belonging to a stable class.

A class of equivalent distributions is called symmetric if it has a representa-
tive F satisfying F(—x) = 1 — F(z) (i.e., the representative F is symmetric
about 0).

The last two examples show that the normal (Gaussian) and the Cauchy
distributions are symmetric and stable. Symmetric and stable distributions
have a very special réle in the theory limiting distributions of (rescaled)

sums of independent and identically distributed (i.i.d.) random variables.

Convolution of exponentials: the gamma distributions. We are go-
ing to compute EXP(\) « EXP(X) ---x EXP(X). Let A € (0,00) be fixed
and denote the density function of the distribution EX P(X) by f:

f(@) = Ly o) (@) e A

Let

7= f, Ynt1 = Yn * f.

That is: +, is the density function of the distribution of sum of n i.i.d.
EX P())-distributed random variables.

One can easily prove by induction that
AP xn—l e—)\x
() = Moo ()

The distribution with this density function is called gamma distribution of
parameters A and n. We shall denote it GAM (A, n). It is the distribution
of the sum of n i.i.d. memoryless waiting times.

MORE TEXT HERE

Relation between GAM (A, n) and POI()). Let 11, 12, ... be i.id. EXP())
distributed waiting times (e.g., 7, could be the time elapsed between the

(n — 1)-th and n-th beep of a Geiger-Miller counter. Denote
n
T, == Z T
7j=1
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In plain words: Tj, is the time of the n-th event (beeps of the Geiger-Miiller

counter) occuring. Define also for ¢ > 0
vy = max{n : T,, < t}.

That is: 14 is the number of events (beeps) occuring up to time ¢. Clearly,

by definition of 14
{np > n}={T, <t}

We prove that v, is POI(At)-distributed.

This is equivalent to proving

t o0 k
/ Tn(s)ds = Z e’\t%, n > 0.
0 k=n )

Indeed: for ¢ = 0 both sides vanish and differentiating both sides (after
straighforward manipulations) we see that the derivatives are identical. This

proves the claim.

MORE EXPLANATIONS

MORE ON GAM(A,v), WITH v € R, .

7 The laws of large numbers I.: The weak law
7.1 Bernoulli’s weak law of large numbers

Let p € (0,1) be fixed and denote g := 1 — p. Let S,, be a random variable
with distribution BIN (p,n):

n

P(S, =k) = (k> kqn=k = b, (k).

Since p is kept fixed throughout this, we section suppress notation of depen-

dence on p. S, can be written as
Sn:£1+§2+"'+£n

where §;, j = 1,2,... are i.i.d. random variables of distribution P({; =

1) =p=1—-P(& = 0). The expectation and varianve of S, is

E(S,) = np, Var(S,) = npq.
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The binomial distribution is unimodal. Note that for any integer k €
[1,n]
by (K n—k+1
7%(2(_)1) _.._(n—k+Dp kq* )P (25)
We conclude that b, (k) > b,(k — 1) if and only ik £ < np+ p. Denote by k*
the unique integer in the unit interval (np—gq, np+p| and call it the modus of
the distribution BIN(p,n). Then k — b, (k) is monotone increasing in the
interval [0, k* — 1] and monotone decreasing in the interval [k*,n]. If np+p
is not an integer then b, (k* — 1) < b,(k*). If np + p is integer (degenerate
cases) then b, (k*—1) = b, (k*). k* (possibly also k*—1) is the most probable
value of the random variable S,,.
We are going to analyse the asymptotic behaviour of the distribution
of Sp, as n — oo. We are going to prove that the asymptotically, the

distribution of S, /n will be concentrated at its expected value p.

Theorem 30 Bernoulli’s law of large numbers.

Fiz p € (0,1). For anye >0 andn >¢e !

|Sp — np| 1+4e
P( n > 6) = 2ne? (26)

Note that the right hand side converges to 0 as n — oo.

Proof Letr>np+pbe an integer. In particular we also have r > k*.
Applying (25) we find that for any k£ > 1

bu(r + k) :(n—r—k+1)ps(n—r)p::y<1.
bu(r+k—1) (r+k)g rq
Hence, for any [ > 0
T-I—k k
and
n—r o 1 'rq
P(Sn>r)—lz_% n(r+1) < Z r)l_y:b(r)T_np
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Next we give an upper bound on by, (7):

1= f:bn(k) > Z bu(k) > (r — K + 1)by(r)
k=0

k=k*
Thus
1
ba(r) < = (28)
Inserting (28) in (27) we find for any integer r > k*
rq
PS, >r) < —24
(5 27) < (r —np)?
Hence
[np + nelg
P —np > =P(S, > <
(S —np > ne) (Sp > [np +nel) < (Tnp + ne] — np)?
np+ne+1)g pg+ge+nlq
( ) _ 5 . (29)

(ne)? B ne
Similarly (changing the roles of p and ¢ and applying exactly the same
arguments to ,SN’n :=n — S,) we prove

< pq—i—ps—i—n_lp

P(S, —np < —ne) < o2

(30)
Finally, (29) and (30) together yield

< 2pq +e+n"t

- ne?

and, noting that pg < 1/4, the bound (26) follows for n > & 1.

P(|S, — np| > ne)

Remarks.
(1) Note, that actually a much stronger statement can be proved. Let -y, be

an sequence of positive real numbers increasing faster than /n:

lim /ny, ! =0.

n—oo
Then, replacing ne by v, in (29) and (30), we get
P<|Sn —np| E) < 2npq+7n26+ 1
Tn (ne)
This result suggests that the fluctuations of S, — E(S,,) are actually of order

— 0. (31)

v/n. Precise formulation of this phenomenon will be the subject of the

central limit theorem.

(2) From Bernoulli’s law of large numbers we easily derive the weak law of

large numbers for sums of i.i.d. random variables with finite range.
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Theorem 31 The weak law of large numbers — finite range.

Let &, 1=1,2,... be i.i.d. random variables with the common distribution
T
P(f:.Tk):pk, k=1,2,...,r, Zpk:]-
k=1

Denote Sy, =& + &+ -+ &,. Then for any e >0 andn > >, |zx|/e

(ke lzkl)® + 4e X5 |kl
k=1 n62 k=1 . (32)

P('S" — nm|

T
>E)§
n

where

T
m = B(&) =) zpr-
k=1
Note that the right hand side converges to 0, as n — oco.

P ro o f Denote by Sr(lk) the number of occurences of zj among &1,...,&,:
SE = "lgmny, k=121
i=1
Clearly, Sy(Lk) has distribution BIN (pg,n) and
Sp = Z mks,(ﬁ).
k=1
Thus

|Sp —nm| =

> w(SP — npy)
k=1

T
< (D lzl) max |S{E) — npy.
k=1 - =

It follows, that
,

S —nm| <me if lrggz|5£k)—npklSné‘/(;lm)

and, consequently,

T T
P(|S, — nm] > ne) < 3" P(ISE) — npl > ne/ (D lou))-
k=1 k=1
Now, applying Bernoulli’s theorem to Sy(Lk), k=1,2,...,r, we find that for
n > Y . |zk|/e the bound (32) holds.

An application: Weierstrass’ approximation theorem
This is a theorem in pure real analysis. It states that a continuous
real function can be uniformly approximated by polynomials on any fixed

compact interval.
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Theorem 32 Weierstrass’ approximation theorem.
Let f :[0,1] = R be a continuous function. Then for any € > 0 there ezists
n € N and a polynomial P, of degree n such that

sup |f(z) — Py(z)| < e. (33)
1<z<1

Proof (S.Bernstein) We shall denote the variable by p € [0, 1] instead
of z. Define

n

Bup)i= Y- ()01 =041 k) = B (50 /m)

k=0

where S, is a BIN (p, n)-distributed random variable. These are the Bern-
stein polynomials associated to the function f. We claim, that given £ > 0,
for n siffuciently large B, will satisfy (33).

We shall use two elementary facts about continuous functions defined on
compact intervals. Both are direct consequences of the Heine-Borel Theo-

rem.

(1) f is bounded:

M= sup |f(p)| < . (34)
0<p<1

(2) f is uniformly continuous:
(Ve >0) (36>0):[p—p|<d=|[f(p) - f(p)] <e/2. (35)

Now we turn to the proof of the claim:

110) = Balp)| = | X (3 )1 = 45 0) = 16/
k

<3 (F)rta - A1) - /).
k

First choose ¢ as in (35) and write the right hand side of the last inequality

as

> (F)eta- e e - )

k:lp—k/n|<é

Py (Z)pm — D)1 () - Fk /).

k:lp—k/n|>d
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Due to (35) the first sum is bounded by £/2. Due to (34) the second sum is
bounded by

144
oMy (n)l”“(l—p)”‘k=2MP(|Sn—np|Zn5)S2M+—6

2nd2
k:lp—k/n|>6

where in the last step we have used Bernoulli’s theorem. Now, choose n >
4M (1 + 40)/(2e6%) to bound this last term by £/2. Putting these bounds

together, the theorem is proved.

7.2 Markov’s and Chebyshev’s inequalities

Markov’s inequality and its immediate consequences are extremely simple
and extremely efficient tools.
Markov’s inequality gives an efficient upper bound on the probability of

(extremely) large values of a positive random variable.

Theorem 33 Markov’s inequality.

Let & be a non-negative random variable. For any A > 0

E()
P((>))< -

P roof. Indeed,
E(6) > B(E1{€ > A}) > AB(I{¢ > A}) = AP(¢ > A).

The same thing, written in terms of the distribution function F' of &:

o0

mp = /Ooo 2dF(z) > /:o 2dF(z) > )\/ dF(z) = A1 — F()).

A

Note, thet the condition of positivity of & is essential.

Chebyshev’s inequality gives an upper bound on the probability of ex-
tremely large fluctuations (i.e. deviations from the mean value) of a random

variable.

Corollary 34 Chebyshev’s inequality.

Let & be an arbitrary random variable. For any A >0

Var()

P(—B(E)| > N < 5,
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Proof Apply Markov’s inequality to the random variable n := (£ —E(£))?.

Corollary 35 Generalized Markov inequality.
Let & be an arbitrary random wvariable and f : R — Ry a monotone non-

decreasing function. For any X\ € R

E(/(9)
P2y < =l

P roof Apply Markov’s inequality to the random variable 1 := f(£).

Corollary 36 Generalized Chebyshev inequality.
Let & be an arbitrary random variable and f : Ry — Ry a monotone non-

decreasing function. For any A € R

E(f (£ —E@©)))
P -E({)| 2 X) < )
(I 1= O
Remark. All these inequalities are, sharp in the sense that ther exist dis-

tributions where the inequalities actually become equalities. Find them!

7.3 The weak law: general case

The WLLN tells that the fluctuations of the arithmetic mean of i.i.d random

variables are asymptotically negligeable, for large n.

Theorem 37 The weak law of large numbers.
Let £1,&2,... be independent and identically distributed random wvariables
which have finite second moment. Denote m := E(§;) and o? := Var(§;)

and Sy, ==& + & +---+&,. Thenfor anye >0

o2

>€) < —.
=) T ne?

P('Sn — nm|

n

Note, that the right hand side converges to zero as n — <.

P roof Apply Chebyshev’s inequality to the random variable S :

Var(S,) no? o2
> ) = P(|S, —nm| > ne) < e = 153 = 3

P(‘S" — nm|

n
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Remark. Actually, the same argument proves a much sharper result. Let
vn be a sequence of positive numbers which increases faster to infinity then
V/n, that is: v/n/vy, — 0 as n — oo. Then we have

Var(S,) no?

| Sy, — nm|
P(izs):P Sy, — nm| > yme) < = -0
Vn ( | ) vae2  y2e?

as n — oo. This argument shows that the fluctuations of the sum S, =
& +&+ -+ &, are of order y/n. The precise formulation of this statement

is the content of the central limit theorem.

MORE ON WEAK CONVERGENCE!!!

8 The central limit theorem I.: DeMoivre-Laplace
8.1 Stirling’s formula

Theorem 38 Stirling’s formula.
For anyn € N

|
1< —— <t/ (36)

1
V2rnttzen

Remarks.
(1) In particular it follows that
nl =v2rn"Tze " (14 0(1/n)),
as n — 0o. With some extra work the sharper asymptotics

nl = V21 ™2 e (1 4 1/(12n) + O(1/n2))

can be derived.
(2) In the forthcoming proof we shall prove (36) with some unidentified
positive constant ¢y, in the place of v/27. The identification ¢y, = v 27 will

drop out from the proof of DeMoivre’s theorem.

P r o o f. Denote
1
dy, :=logn! — ((n+ §)logn —n)

We show that the sequence d,, is strictly decreasing while the sequence d,, —

ﬁ is strictly increasing. From these two facts it follows that the sequences
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— ﬁ, converge downwards, respectively upwards, to the

same (finite) limit dy. This proves (36) with the constant ¢y, := exp(deo)
in the place of v/27.

dn, respectively d,

1 1 1. 1451
dy—dpyy == (n+2)log = — 1= (2n+1)> log — 2L _ 1
2 2 1+2n+1
Let )
- 1
2n+1 <

and use the Taylor series
1
log(1+1) == %(—t)k

valid for [¢| < 1, to get

1. 1+t 1 s N e
2% 514 2t< Zk( 2 Zkt Z2k+1t

k=1 k=1 k=0
Thus,
o0 o
1 1 1 1
d - d — . — ]_ = . .
n Sl kz_o2k+1 (2n + 1)2 ;2194—1 (2n + 1)
Hence
1 1 1

100
0<dy,—d N =
< "+1<3;(2n+1)2k 12n 12(n +1)

Hence we conclude that the sequence d, is strictly decreasing, while the
sequence d, — 73— is strictly increasing. From these two facts (36) directly

follows.

8.2 The normal distribution revisited

TO BE COMPLETED

8.3 DeMoivre-Laplace CLT

Before reading this section, read carefully (and understand) Bernoulli’s law
of large numbers (with comments). We analyze finer asymptotics of the
distribution of BIN (p.n), for large n.
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For the rest of this section fix p € (0,1) and denote ¢ := 1 — p. Let Sy,
be a random variable with distribution BIN (p.n):

P(S, = k) = (Z) kg k= b, (k).
(As p will be kept fixed, we supress the notation of dependence on p.) Note,
that
Sn=8+&+ - +&

where &, i = 1,2,...,n are i.i.d. with distribution P(§;, = 1) =p=1—
P& =0), and
E(S,) = np, Var(S,) = npq.

We have seen (see the remark after Bernoulli’s law of large numbers) that
the fluctuations (i.e. random deviations from the mean value) of S,, are of
order 4/n, that is, of order /Var(S,). So, it is rather natural to ask about

the n — oo asymptotics of the distribution of
o Sn —E(Sy) _ Sp —np
" /Var(S,) LT
Theorem 39 CLT for the binomial distribution — global form.
Let p € (0,1) be fized. Then for any fized interval [a,b] C R, with —oo <
a<b< +o0

Tim P(S; € [0,b]) = 0(b) — ®(a), (37)

¢>(:L‘)=/w w(y)dy=/x %dz}

is the standard normal distribution function.

where

This theorem will follow from the sharper result due to Abraham De-

Moivre.

Theorem 40 DeMoivre’s theorem.

Fizp € (0,1). Let M, be a sequence increasing to infinity slower than n?/3:
. . M,
nlgrolo M, = oo, nlggo 35 = 0. (38)
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Then there exists a threshold index Ny (depending on the sequence M),
such that for any n > Ny the following bound holds

) b | M,
k=\k—S”PI|)<Mn QD((k—np)/\/W) 1| < dma {npq’ (npq)Z} (39)

Remark. This is the sharpest formulation of DeMoivre’s theorem. Typi-
cally, we use it for sequences M,, = M ,/npq, with some fixed M. Then we

have:

sup
k: |k—np|<M./npq

.
Q .

o((k —np)//npq)

/P b (k) _1‘ L AM (40)

Proof of the CLT.
Let —o00 < a < b < oo be fixed.

np+b,/npq
P(Spelab)= Y  balk)
k=np+a./npq
np+b./npq
v AR
npq npq

k=np+a./npq

np-+b,/npq 1 k—np
b (- ()
k=np+a./npq nrq npq

From (40), using the fact that sup, p(z) < 1/v/2m, it follows easily that

1 k—np 4 2m M3
( )‘ < .

sup bn (k) — @
o [h—np| <M PG | VIPq ' \/iipq npq
Hence
| < 4v27 max{|af®, |6’} (b — a) (npg) /% = 0
as n — oQ.

On the other hand, I, is exactly the Riemann approximation of f: o(y)dy.

By standard calculus we have:

“12 49

/ab e(y)dy — I

< (b~ a) sup|¢'(z)| (npq)
T
as n — oo. So, we got (37) for compact intervals [a, b]

62



TO BE COMPLETED FOR UNBOUNDED [a, b] !!

Proofof DeMoivre’s theorem.

Denote z := k — np and assume |z| < M,,. In terms of z we have

n! pnp—|—zqnq—z
(np + 2)!(ng — 2)!

ba(k) =

Step 1: use Stirling’s formula.
We denote by ¥, (k) the expression gotten from this one, by replacing all

factorials with Stirling’s asymptotics
Coonn—}-l/Qe—n pnp—l—zqnq—z

/ —
bn(k) = coo(np + z)np—l—z—l—l/Ze—np—zcoo(nq _ z)nq—z+1/26—nq+z

After starightforward manipulations we get:

1 P —(np+2+1/2) 2 —(ng—2+1/2)
) )
Coor/TPq np ng

Using (36) we have

b (k) =

1 1 b (k)
) =) <k

Ly

< exp(m

exp(

Now, choose N; so, that for n > Ny
M,

M 1 (42)
npq 2
(Note that by (38) M, /n — 0.) The bound (42) also implies

min{np + z,nqg — z} > npq/2

and from (41) we get

1 bak) 1
P 3d) < )

Step 2: Get rid of some unpleasent factors.

Next, we define

by (k) = b;uc)\/ (1 + n_p) (1 _ n_q)

B 1 (1 N 2 >—(np+2) (1 2 )—(nq—z)
Cooy/TPq np ng
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Note that due to (42), for |z| < M,, we have

max{|z|/np, |z|/ng} < 1/2. (44)
Using
exp(z — %) < 1+ < exp(z)

valid for any £ > —1/2 we find

(zw—qf_¥09+q%ﬂmy
2npq 2(npq)? by, (k)

Using the bound (44), and z| < M,, we have

2npg

exp < exp(

3M, . b (k) M,
4npq) by (k) <eXp(2npq)

exp( (45)

Remark. Note that in the special case p = ¢ = 1/2 these bounds become
much more friendly:

4M2 b (k)
exp(— n2n) < bg(k)

<1

Step 3: Use Taylor expansion of log(1 + x).
For |z| < 1/2 the following bounds hold
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5 < |z|3. (46)

—|z|® < log(l + z) —z +

Using (46), after elementary computations we find

2\ ~(mptz) 2\ ~(ma—2) 22 2023
logs |14+ — 1—— — < 5
np ng 2npq| — (npq)
This, together with |z| < M, implies
2M3 /npq bl (k 2M3
exp(— ) < Coo /P4 b (F) < exp( =) (47)
(npq)*” ~ V2m o(z/\/npq) (npq)
Putting the bounds (43), (45) and (47) together we find
M,  2M} Coo /TG by (k) M,  2M}

P g~ 0 < Var gt yna) < P npa T upg)?)

Now, choose Ny so that for n > ng

M,  2M3
npqg  (npq)
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and use the fact that for 0 <z < 1

e’ —1< 2z
to get
Coo \/an(k) Mg
V2 o(z/Jnpg) < dmax {npq (npq)Q}' (48)

which, modulo ¢, = V27 is identical to (39).
It remains to identify the constant co,. Fix M < oo, then from (48) we

have (see the argument in the proof of the CLT):

np+M\/W
\/2
> k)
k:np—M\/W

On the other hand, the argument used in Bernoulli’s law of large numbers

(see (31) implies (one could also simply use Chebyshev’s inequality here):

9 1 1 np+M./npq
1— - — — < > bak) <1
M2 M,/ M?
npq npq k—np— M /PG

Taking the limit n — oo these bounds imply

V2ar
1‘@—

y)dy < 1.

Now take the limit M — oo to get

V2r

Coo

1<

<1
which proves the claim.
APPLICATIONS: TO BE COMPLETED

8.4 Local CLT for ~v distributions

Let &,1=1,2..., be independent and identically distributed random vari-

ables with the common exponential distribution

0 ifz <0
P(&<w):{ 1—e M ifa:;O.
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Denote Then, as seen in section (??), S, has gamma distribution with

density function

0 if 2 <0
Julz) = Mol iz >0

The expectation and variance of S), is
E(S,) =n\"!  Var(S,) =n\?

Denote by S, the standardized version of Sj:

g Su—B(Sn) _ Sp—nA!
" /Var(S,) N

The density function of the distribution of S} is

fal@) = VoA fa(nA™h + VAT ).

Theorem 41 Local central limit theorem for gamma, distributions.
For any z € R fized

fa(@) = o(x)
as n — oo.

P roof Indeed,

1

’I’L"+§ e M T n—1
o) — e — — (14 2 —vnz
fala) ) e

Applying Stirling’s formula and standard expansion we get
1

() = e—$2/2 n
fa(z) VT (1+0(1/vn)).

9 Analytic tools I.: The generating function

TO BE COMPLETED
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10 Analytic tools II.: The characteristic function
10.1 Definition and primary properties

Definition 42 The characteristic function of the real-valued random wvari-
able & (or: of the distribution function F) is

o0

6 R=C,  p(t) = Blexplite)) = / exp(itz)dF (z).

—00
Le., the characteristic function is the Fourier-Stieltjes transform of the

distribution function F. If F is absolutely continuous and f := F' is its

density function, then
o0
#0) = [ explite)f (o)
—0oQ
is the Fourier transform of the density function f.
The primary properties of the characteristic function are formulated in

the following theorem:

Theorem 43 Primary properties of the characteristic function

Let & be an arbitrary real-valued random variable, F its distribution function
and ¢ its characteristic function. Then ¢ has the folloing properties:

(1) Bound:

(VtER) [p(t)| <1, and ¢(0)=
(2) Uniform continuity: t — ¢(t) is uniformly continuous on R.

(8) Positive type: for anyn €N, t1,...,t, €R, and z1,...,2, € C

n
Z zrz1(ty, — 1) > 0. (49)
k=1
(A function with this last property is called of positive type.)

Proof
(1) This is straightforward:

Bl = | / AR (z)] < / 11| dF () / iF(z

The inequality is valid, since F' is nondecreasing.

(2) Fix M < oo and use the following bounds valid for any a,b € R:

e — | < min{2, |a — b|}.
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60 - o) <1 [ e — o |dp(z)

— / |eit:c o ei5w|dF(.’17) +/ |eitac o ei5$|dF(:v)
{l=[<M} {Je|>M}

< M|t — s| + 2(F(=M) + 1 — F(M)).

We prove that for any € > 0 we can find a § > 0 such that if [ —s| < § then
the right hand side of this inequality is less then ¢. First choose M large
enough to have F(—M) +1 — F(M) < /4. Second: choose ¢ < ¢/(2M).

(3)
> amb(ts —t) = D zzB(E )

k=1 k=1
2

n .
Z zpett €| > 0.

k=1

n
=E Z Zkzlei(tkftl)é =E
k=1

Remark. On property (1). A random variable ¢ (or its distribution function
F) is called of lattice type if it takes its values from (or the distribution is

fully concentrated on) an arithmetic progression:
(FdeRy,re[0,d) P e{kd+r:keZ})=1.

It is easy to see that
(1) If the random variable £ is not of lattice type then for any ¢ # 0 |¢(¢)| < 1.
(2) If the random variable £ is of lattice type with period d and shift r then

o(2rk/d) = exp(i2nkr/d), k€ Z,

and for t ¢ {2nk/d : k € Z} |¢(t)| < 1.

The converse of Theorem 43 is the following:

Theorem 44 Bochner’s theorem.

Let the function ¢ : R — C have the following three properties

(1) $(0) = 1.

(2) phi is continuous at t = 0.

(3) ¢ is of positive type, in the sense of (49).

Then ¢ is the characteristic function of a probability distribution function.

Le., there exists a probability distribution function F such that ¢(t) =
[ exp(itz)dF ().
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Remarks.
(1) This is a beautiful ‘structural’ theorem identifying the range of Fourier-
Stieltjes trasform defined for probability distribution functions. Practically,
if you have to decide about a function whether it is the characteristic function
of a probability distribution function or not, it is not of much use. Usually:
properties (1) and (2) are easy to check but property (3) is typically hopeless.
(2) Note that the properties stated in Bochner’s theorem are formally weaker
than those in Theorem 43.

Two further straightforward properties of the characteristic function: let

¢ be a random variable and ¢(t) its characteristic function. Then

P(—t) = ¢(¢)
=E

Pag+(t) (exp(it(ag +b))) = e™¢(at),  a,bER

Examples. (Compute them! Use complex integrals, theorem of residues
etc.)
Uniform, U(a,b):

1 b eith _ gita
1) = ztwd —
o) = 5 [ e = S

Exponential, EXP()):

Normal, N(m,o):

O e L PR——

Cauchy, CAU (m, T):

¢<t)—/°° el T gy = explimt — 1lt])
= 7006 B ey b z =exp(imt — 7
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10.2 Moments of £ and derivatives of the characteristic func-
tion

Theorem 45 Taylor expansion of the characteristic function.
If for some k € N the k-th absolute moment of & exists, B(|¢|*) < oo, then
the characteristic function ¢ is at least k times continuously differentiable

and

¢*)(0) = *E(¢F).

dk o 0 gk 0 )
(k) — itx — itx — - \k itz )
P\ (t) o /_ooe dF (x) e dF (z) /_ (iz)"e"*dF(z)

The differentiation under the integral is allowed due to the absolute integra-
bility of the right hand side.

Remark. Warning! For k£ odd the converese statement is bot true in gen-
eral. Tt is possible that due to cancellations $(21)(t) exists, but E(|¢|+1) =

oo. For k even, the converse is true.

From the last theorem it follows, that if for some m € N E(|¢(|™) < oo

then the characteristic function has the following Taylor expansion at ¢y = 0:
ky (@)
¢(t) = B )T +o(t™).
k=0
Analiticity of the characteristic function.
Theorem 46 Covergent power series expansion of the characteristic func-

tion.
If for any m € N we have E(|¢|™) < co and

m 1/m
lim sup (M) =R l<x

then ¢(t) extends analitically to the strip
{z € C:|Imz| < R}.

In this case the characteristic function and, consequently, the distribution
(see Theorem 49 below) is determined by the moments E(£™).
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Proof
Let ¢t € R be fixed. Then

6200] = | [ optarta

o] =| [ apsare)

< E(¢%),

< \/E(§2k)E(§2k+2)

Hence it follows that for any £ € R
1/m
(m)
lim sup (M) <R!
m—00 m!

and the statement follows.

10.3 Smoothness of the distribution function and decay of
the characteristic function at +oo

Theorem 47 Decay of the characteristic function at +oo.
Let the distribution function be absolutely continuous with density function
f. If f is n times differentiable and

/ B (z)lde < 00,  k=1,2,....n (50)
then
lim [¢[*|¢(#)| = 0.
[t| =00
Proof.
By integration by parts, induction on k£ = 1,2,...,n shows
AN
¢(t) = (_> / eztwf(k)(x)dm’ k= 1’2’.“’n.
t —0oQ

In the induction step (50) is used. So we have

7 |p(2)] = \ [ e @

Due to (50) and the Riemann-Lebesgue lemma the right hand side of (50)

goes to 0 as |t| — oo.
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10.4 Characteristic function of sum of independent random
variables

Let ¢ and 1 be independent random variables and ¢ := £ + 7. Let the

characteristic functions of &, n and { be

¢e(t) := E(exp(itf)), #n(t) := Elexp(itn)), ¢¢(t) := E(exp(it()).
Then
¢ (t) = E(exp(it(€ +n))) = E(exp(it€) exp(itn))
= E(exp(it))E(exp(itn)) = ¢¢(t)dn (?)-

Written in terms of the distribution functions:

o) = [ erar ey = [ eraf [ Fe—yac)

—00
== [ eMar() [ ema6l) = delt1n(0).
—00 —00
This is nothing more than the well known fact that Fourier transform of
convolutions is equal to the product of the Fourier transforms of the factors.
By induction on the number of summands: if &1,&o,...,&, are indepen-

dent random variables then, with obvious notations
¢5. &) = ][ 4 ®-
%

Forecasting the CLT. Let &, ¢ = 1,2,3..., be independent and identi-
cally distributed random variables with finite second moment. Denote their

expectation and variance by
m = E(&), o? := Var(&).
Let Sp =&+ & +---+&,;. Then
E(S,) = nm, Var(S,) = no’.

We have seen (see the comment after the weak law of large numbers) that
the typical (normal) fluctuations of S,, about its mean value, are of order
\/m . So it is very natural to ask about the asymptotics of the distri-
bution of

.. Sn —E(Sp) _ S, —nm

S”
" Var(S,,) oyn
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We have seen already a number of examples where the distribution S}, con-
verges (in some sense) to the standard normal distribution. Is this a coinci-
dence or something deeper?

Without loss of generality we may assume m = 0. Let’s compute the
characteristic functions. Denote the characteristic function of ¢ by ¢ and
the characteristic function of S by ¢;. Then we have for ¢ € R fixed

47 (t) = Blexp(itS, /o/n)) = E(exp((,% )
- it , n
= [[mtexn( =) = otV

As t is kept fixed and n — oo, we use the Taylor expansion of ¢ around 0:

or(t) = (1 + Oi—t - a—2i + o(n_1)>n — exp(—t%/2).
ovn 2 d’n
The limit is exactly the characteristic function of the standard normal dis-
tribution. So, we can conclude that if one could prove that given a sequence
of distribution functions, pointwise convergence of the sequence of their
characteristic functions to some limit characteristic function, implies con-
vergence of the distribution functions (in some sense), then the CLT in its

most general form would follow. This will be the subject of the next section.

10.5 Reconstruction of the distribution function from the
characteristic function

Is the characteristic function characteristic indeed? That is: is the map
F — ¢p injective? Can we reconstruct the distribution function from the
characteristic function?

This is the problem of inverting the Fourier transform. Let’s consider
first the absolutely continuous distributions. If f is a density function and

¢ its Fourier transform,

o0 = [ " o f (2)da, (51)

—0o0

then formally

0 =5 et g(t)dt. (52)

—oQ
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The question is: when is this formula indeed valid in a strict mathematical
sense and what is the truth if this formula is not valid.

There is a first obstacle here: while the integral in (51) is well defined
(since f is integrable), the integral in (52) may not be. Indeed, ¢(¢) in general
is bounded by 1 but not integrable. Theorem 47 at least tells us that if f is
twice continuously differentiable and |f(*¥)|, k = 1,2, are integrable then at
least the integral in (52) is well defined.

Theorem 48 Fourier inversion.

Let f be a probability density function and ¢ its Fourier transform. If f is
continuous and its Fourier transform is absolutely integrable then the inver-
sion formula (52) holds.

Proof.
For o > 0 let f, be the convolution of f with a normal density function of

mean 0 and variance o2

Folz) = /°° f(y)eXp(—(iv—y)z/(%z))dy_

2mo

The Fourier transform of f, is

Let’s compute the inverse Fourier transform of ¢,.

i * e*itiEqs (t)dt —_ i * e*it$e*02t2/2¢(t)dt
2 J_ 7 2 ) o
1 oo . o
=3/ etz o=0"t?/2 (/_Oo e’tyf(y)dy> dt

_ % i * —it(z—y) —02t2/2
B /—oo (27T /;oo ¢ ¢ at f(y)dy

e exp(~ (2 — )?/(202))

. 2o

f)dy = fo(x).  (54)

In the third step we have used Fubini’s theorem. So, we can conclude that
the inversion formula (52) at least applies to f,. Now, we let 0 — 0. Due

to continuity of f, for any fixed z € R

lim fo(z) = f(2).

c—0
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On the other hand: if ¢ is absolutely integrable then, by Lebesgue’s domi-
nated convergence theorem we have
0 . 2 2 0 .
lim e e 20 (1) dt = / e T p(t)dt
=0 ) oo
Hence the theorem.

Assuming that the the distribution function F' is absolutely continuous

with density function f and the conditions of the previous theorem hold, we

find
F(b) - Fla) = / " f@)da = / ’ (% / ” e—itzqs(t)dt) f(@)da

1 [e'e} efitb _ efita
= — t)—dt.
= / ECE— (55)

Now, can this formula be extended to the general case? The answer is given

in the following theorem

Theorem 49 Reconstruction of the distribution from the characteristic
function.

Let F be an arbitrary probability distribution function and ¢ its character-
istic function. Let a < b be points of continuity of F'. Then the following

inversion formulas hold:

o8] e—itb _ e—ita eztb _ ezta
F)~Fla) = o [ = (¢(t)7. ; ¢(—t),7>

2 J_ o 2 —it 1T
1 [T —itb _ _—ita
= lim — / Pt — = dt.
T— o0 27T -T —1at
00 —ith —at
= 1imi/ e g
o—0 27 —00 —1t

Proof.
We prove the last formula. We adapt the proof of the previous theorem.
Denote by F, the convolution of F with a normal distribution of mean 0

and variance o2

® exp(—(z — y)?/(202
o) = [ R i

—co 2no

0o 22 02
:/_ F(:c—y)eXp( \/y2_7{((72 ))dy
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The distribution F}; is absolutely continuous. Denote its density functionby
fo- The characteristic function ¢sigma of Fy, is the Fourier transform (51) of
fo. Formula (53) again holds and the arguments form (54) can be repeated
to show that the inversion foromula (52) applies to the density function f,
and its Fourier transform ¢sigma. Applying (55) to F, we get

e—itb _ e—ita
1t

Fy(b) — Fy(a) = % /_ P Ll

We have to prove that

lim Fj,(xz) = F(x)

o—0
at points of continuity of F'. This could be proved purely analitically. We
give a probabilistic proof. Let £ and 7, be two independent random variables
(jointly defined on the same probability space), ¢ with distribution P (¢ <
z) = F(z) and nsigma of distribution N(0,0). Then we have
|Fo(x) — F(z)| = [P(£ + 10 <z) - P(§ <)
< max{P(& <z, {4+ > $)5P(£ >z, £+1n, < 37)}

We prove that P(§ >z, £ +1ny < z) — 0 as o — 0, the other one is proved
identically.Let € > 0 be fixed. For any § > 0

P>z, {+n, <z
=P €elr,z+0), {+n <z)+PE>z+6, {41, <z)
<P €[z,2+0) +P(n, <—0)

Now, first choose ¢ sufficiently small to have P(¢ € [z,z + §)) < ¢/2. This
can be done since z is point of continuity of F,. Next choose ¢ sufficiently

small to have P(n, < —d) < ¢/2. The theorem is proved.

11 Weak convergence of distributions and the cen-
tral limit theorem II.

11.1 Weak convergence of probability measures on metric
spaces

We give the general definitions and primary properties of weak convergence
of probability measures on metric spaces. Later we shall be concerned with

the special case of R.
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Let (S,d) be a metric space. Denote B the Borel algebra generated
by the metric topology (i.e. B is the smallest sigma algebra containing all
open balls of (S,d)). We first define the natural notion of convergence of

probability measures on (.5, B).

Definition 50 Let ju,, n=1,2,... and u be probability measures on (S, B).
We say that the sequence u, converges weakly to u, denoted u, = u, if for

any bounded and continuous function f : § — R

lim /S Fdpin = /S fdu.

(Lebesgue integrals are meant.)

Remark. Note that limits of weakly convergent sequences of probability
measures are unique: if u, = v and p,, = v/ then p = p'.

There are a number of equivalent formulations of weak convergence:

Theorem 51 Various formulations of weak convergence of probability mea-
sures.

The following formulations are equivalent:

(1) pn, = p, as n — oo.

(2) For any open subset A C S, liminf,, o pn(A) > p(A).

(8) For any closed subset A C S, limsup,,_, . n(A) < p(A).

We shall be concerned with the special case S = R (or possibly S = R")
with the usual (Euclidean) metric. The measures u, will be the distributions
of random variables Y,,. Le., u,(A) :=P(Y,, € A).

As already mentioned the space S = R (or S = R") is very special: due
to the natural linear order of R (or natural partial order of R™) probability
measures are in one-to-one correspondence with the conceptually simpler

distribution functions, realised by:

F(x) = p((=00,2)).

In terms of distribution functions: weak convergence is essentially point-

wise convergence of the sequence of distribution functions.

Theorem 52 Weak convergence of probability distribution functions on R.
Let (un)$2 1, v be probability measures of (R,B) and (Fp)0 ,, F their dis-

n=1-’

tribution functions. Then the (1) and (2) below are equivalent.
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(1) pin = p, as n — oc.
(2) limy,_, o F,(z) = F(x) at points of continuity of F.

Proof
(1) implies (2): For x € R and € > 0 fixed, define the functions

1 if —oco<y<Lz
gCE,E:R_)[O’ 1]5 gw,s(y) = (37+6—y)/6 if r<y<z+e
0 if rz+e<y<oo

Then, for any z € R, we have

Fo(z) < [g92e) dun(y) < Fu(z+e),

F(z) < [ggec)duly) < F(z+e).

But, since p, = p and g; ¢ is bounded and continuous, we have

n—oo

lim 9z, () dpin (y) :/gm(y) dp(y)-
R R

These imply that for any € > 0

F(z —¢) <liminf F,(z) < limsup F,(z) < F(z +¢).

n—00 n—00

letting now £ — 0 yields the result.
(2) implies (1): Let f : R — R be bounded and continuous and ¢ > 0.
Denote ||f||co = sup, |f(z)|. We prove that given the pointwise convergence

F,(z) — F(x) on points of continuity of F', we can find Ny € N so that for

n > Ny
/fdun—/fdu‘<€-
R R

In the following arguments, for sake of economy, we use the subscript n = o

for the limit objects Foo = F', pioo = -
First step. Choose M < oo so that +M are points of continuity of F and

foralln=1,2,...,0

Fo(—M) +1— Fo(M) (56)

P
611 flloo”

Note that for any single n the left hand side is monotone decreasing with

M and goes to zero as M — co. We want the bound to hold uniformly for
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all n < co. This can be easily done: first choose M’ so that + M’ are points
of continuity of F and F(—M') +1 — F(M') < ¢/(12||f||co) then choose
N; so that for n > Ny, |F,(xM') — F(xM')| < €/(24]|f||c0). It follows
that for n > Ny (56) will hold, with £M' in place of =M. Finally, choose
M > M’ so that =M be points of continuity of F' and (56) hold also for the
finitely many indices n = 1,..., Ny. This choice of M will imply that for all

‘/Rfdun—/[MM

)

n=1,...,00

&
]fdun <% (57)

Second step. Using the fact that the continuous function f is uniformly
continuous in the compact interval [—M, M|, choose a subdivision —M =
zg < 1 < -+ < xp_1 < xR = M so that |f(z;) — f(y)| < /6 for all
j=12,...,kand y € [zj_1,z;]. We have foralln=1,...,00

k
€
[ = Y 1) (Faley) = Falog)| < 5
[_M’M] j:l
By rearrangement of the sum, this reads
u €
[ =Y (o) — ) Falan)| < 5 (58)
[-M,M] j=1

Third step. Choose Ny so large that for any n > Ny, |F,(z;) — F(z;)| < 2/k
for all  =1,2,...,k. This yields

(flzj1) — f(x)) (Fu(zj) — F(zy))| <

1

(59)

Ll m

k
1=

Putting together (57), (58) and (59) we find

€ € €
- 2 4 2= 4.
‘/Rfdun /Rfd/z‘< 6-I- 6+3

Notation. With this theorem in mind, we shall denote by F,, = F pointwise
convergence of the sequence F), at points of continuity of F. Furthermore
with slight abuse we shall sometimes use the notation &, = £ if the distribu-
tions p, of the random variables £, converge weakly to the distribution y of

¢. In this case the terminology will be ‘the sequence of random variables &,
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converges in distribution to the random variable £&. We emphasize that this
is indeed abuse of terminology, since it is not the sequence of measurable
maps &, : 2 — R which converges in some sense, but the sequence of their
distributions. So, if &, and ¢ are random variables, u,, and u their distri-
butions, F,, and F theire distribution functions then the notation &, = ¢,

tn = p and F,, = F will be used interchangeably.

Examples.

(1) Let &, n =1,2,... and £ be random variables defined on the probability
space (Q, F,P)and let p,, n =1,2,... and u be their distributions. If fngf
then pn, = u, as n — oco. However this is not the typical occurence of weak
convergence of distributions. But: it is worth noting that if u, = u on
R then one can construct a probability space (2, F,P)and jointly defined
random variables &,, £ : 2 — R such that §n£>§. (Find it!)

(2) In DeMoivre’s theorem

Sn —np
Ayl

where the limit distribution function ® is the standard normal. This is a

Fi(z) =P ( < :z;) - B(z)

typical weak convergence of distributions.

It is important to know that weak convergence is conserved under con-

tinuous maps. More generally:

Theorem 53 weak convergence of transformed probability measures.

Let pn, n = 1,2,... and p be probability measures on the metric space S
and assume py, = u. Let S be a second metric space and ¢ : S — S a
measurable map. Define the probability measures tip,, n=1,2,... and i on
S by fin(B) := pn(p"'B) and %(B) := u(p~'B). Denote by Jy = {z €
S : 1) is not continuous at x}. If u(Jy) =0 then i, = [t on S.

In particular, let S = S =R and 1 : R = R continuous function. Given the
random variables &,. n = 1,2,... and £ define n, := ¥(&,) and 1 := ¥(£).
If &, = & then n, = 7.

Example. The asymptotic distribution of ‘peebles of random size’. A
simple-minded model for the formation of peebles on the sea-shore is that
pieces are formed by a long sequence of random halfing ... ... . Let &,

i=1,2,... beiid. random variables with the common distribution P(¢; =
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1) =q=1-P(& = 1/2). Let P, := [[,& and P := 22Vnpi/V™
Then the sequence of random variables P, converges in distribution to a

log-normal, LN (0, ,/pq). Apply DeMoivre and the previous theorem.

From the first step of the proof of the second part of Theorem 51 one
can see that if a sequence of probability measures u, converges weakly to

the probability measure p then
(Ve > 0)(IM < oo) such that (Vn): pp([—M,M]) >1—c. (60)

Definition 54 The sequence of probability measures py,, n = 1,2,... on
(R, B) is called tight if (60) holds.

For a general outlook we give the definition of tightness on metric spaces,

though it will not be used later in the present notes:

Definition 55 The sequence of probability measures p,, n = 1,2,... on
the metric space (S, B) is called tight if

(Ve > 0)(IK C S, K compact) such that (Vn): pn(K)>1—e.

The crucial fact about tight sequences of probability measures is, that

one can extract weakly convergent subsequences from them.

Theorem 56 Prohorov’s theorem on R.
Let pp, n=1,2,... be a tight sequence of probability measures on R. Then
there exists a subsequence ng, k = 1,2,... and a probability measure p on

R, so that py, = p, as k — oo.

Proof.
Let F,, be the distribution function of the measure p,. Using the standard
‘diagonal extraction’ trick, we find a subsequence ng, £k = 1,2..., such that

for any ¢ € Q the sequence F,,, (q), k = 1,2... is convergent. Denote

limy,_, o0 Fip, (q) =: L(q).
From monotonicity of the functions z — Fj,(z) it follows that

¢<¢q implies L(q) < (q)" (61)
From tightness of the sequence v, it follows that

lim L(q) =0, lim L(q) = 1. (62)

q——00 q—00
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Define for z € R

F(x) :=sup{L(q) : ¢ € QN (—o00,x)}.

By this definition z — F(z) will be continuous from the left. Further-
more, (61), respectively, (62) imply that F' is monotone non-decreasing and
lim, , o F(z) =0, lim;_, o F(z) = 1. So we conclude that F' is a probabil-
ity distribution function. It remains to be proved that F,, = F', as k — oo.
Let £ — e < g < z with ¢ € Q. Then
liminf Fy,, () > lim F,, (q) = L(q) > F(z —¢).
k—o0

k—o00

Similarly, let * < ¢ < z + ¢ with ¢ € Q. Then

limsup Fp,, (z) < lim Fy,, (¢) = L(q) < F(z +¢).
k—o0

k—o00

Thus, for any z € R and € > 0

Flz—e¢)< likm inf F,, (z) < limsup F;,, (z) < F(z +¢)
—00

k—o00

and hence F;,, = F. The theorem is proved.

Remarks.

(1) We shall speak about tighness of the sequence of random variables &,,
their distributions p, and their distribution functions F;, interchangeably.
(2) The same theorem holds for arbitrary metric spaces, but the proof be-
comes considerably more technical. The theorem formupated for metric
spaces is of crucial importance in the theory of weak convergence of stochas-

tic processes.

11.2 Convergence of the characteristic functions and weak
convergence of distributions

Let F,, n = 1,2,... and F be probability distribution functions and ¢,,
n = 1,2,... and ¢ their characteristic functions. From the definition of
weak convergence it follows that F,, = F implies pointwise convergence of
the characteristic functions. Indeed, for any fixed ¢t € R, z — exp(itz) is

continuous and bounded, so that

bn(t) = / " R, (z) & / " AR (5) = (1),

—0oQ
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as n — 0o. The question is: is the converse statement true? does poinwise
convergence of the sequence of characteristic functions imply weak conver-
gence of the sequence of distributions? For the importance of this question

see the forecasting of the central limit theorem et the end of section 10.4.

Theorem 57 Pointwise convergence of characteristic functions implies weak
convergence of the distributions.

Let F,, n=1,2,... be a sequence of probability distribution functions on R
and ¢y, their characteristic functions. If for any fized t € R ¢,(t) — ¢(t)
as n — oo and the limit function ¢ is continuous at t = 0 then ¢ is the

characteristic function of a probability distribution function F' and F, = F.

Remark. Note that pointwise convergence of a sequence of (uniformly)
continuous functions does not imply continuity of the limit function. The

assumption of continuity of ¢ is crucial.

Proof.
The main point is that from continuity of ¢ at ¢ = 0 tightness of the sequence
F,, follows.

Lemma 58 Let & be a random variable, F' its distribution function and ¢

its characteristic function. Then for any M < oo the following inequality
holds

Pl >M) <y [ oM g

—2/M

Proof of the lemm a.

2/M 2/M )
M / Ndt = M / { / —emdF(x)}dt
2/M 2/M

s
22{/ vf, { 2\|}dF”
>

S L

= P(X|>M)-P(X =M).
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In the second equality we have used Fubini’s theorem. In the first two

siny

inequalities < max{1, ﬁ} are used.
The lemma follows.

Now back to the proof of the theorem. First we prove tightness of the
sequence Fj,. Let € > 0. From continuity at ¢ = 0 of the limit function ¢ it

follows that we can find M < oo, such that

2/M
— ))dt < =
/ 2/M 2’
Since ¢, (t) — ¢(t) pointwise, using Lebesgue’s dominated convergence the-
orem we find Ny € N such that for all n > Ny

2/M
M / (1 — dn(t))dt < e.
2/M

Using the lemma we conclude that the sequence of probability distribution
functions Fj, is tight.

By applying Prohorov’s theorem we conclude that there exists a subse-
quence ng, k =1,2,... and a probability distribution function F' such that
F,, = F. Then, due fact that weak convergence of distributions implies
pointwise convergence of the characteristic functions (see the beginning of
this section) the characteristic function of the distribution F' must be the
limit function ¢. Assume now that Fj, 7 F. Then, aplying Prohorov’s theo-
rem once again, we find another subsequence 1y and a different distribution
function F' such that F;, = F, and forcibly ¢z, (t) — 4(t), pointwise. But,
by assumption of the theorem ¢, (t) — ¢(t) pointwise. So, ¢ = ¢ and, by
the inversion theorem, F = F', which contradicts our starting assumption.

The theorem is proved.

11.3 The central limit theorem in its full generality

Before reading this section read again section 8.3.

Theorem 59 The central limit theorem for sums of i.i.d. random variables.

Let &1,&,... be i.i.d. random variables with finite second moment, m :=
E(&) and 0% := Var(§;). Denote Sy, := & + &+ ---+ &, and
Sp—E(S,) S,—mn

Sy = no=
" Var(S,) ay/n
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Then, for any ¢ € R
P(S; <z)— o(z), (63)

as n — oo, where @ is the standard normal distribution function. That is:
the sequence of distribution of the random variables S;, converges weakly to
the standard normal N(0,1).

Proof.
The argument presented at the end of section 10.4 is completed by reference

to the previous theorem.

The condition for the summands &; to be identically distributed is not
necessary. Actually, the central limit theorem is valid for sums of inde-
pendent random variables if every summand &; is small, compared with the
sum. l.e., essentially no one of the summands dominates. The sharpest

formulation is:

Theorem 60 Lindeberg’s central limit theorem for sums of independent
random variables.
Let &1,&2,... be independent random wvariables with finite second moment,
m; :=E(&;) and o2 := Var(¢;). Denote Sy, := & +& + -+ &p,
n
B? :=Var(§,) = Zaf

1=1
and

g* . Sn—B(Sy)  Sn—>iimy

" /Var(S,) By,
If for any e >0
.1 o0 )
Jim B 1{|z|>eB,} 7 dFk(z) = 0 (64)

Then, for any © € R
P(S; <z) = ®(x), (65)

as n — oo, where ® is the dtandard normal distribution function. That is:
the sequence of distribution of the random variables S}, converges weakly to
the standard normal N(0,1).
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Remarks.
(1) Lindeberg’s condition (64) is written alternatively
.1 2
Jim B max E(lyg sen,)8) =0 (66)
(2) From condition (64) (or (66)) it follows indeed that the random variables

&; are one-by-one small, compared with the sum Sy, in the following sense:

2

lim B,, = o0 and lim max —l; =0.
n—00 n—00 1<k<n Bn

(3) This is indeed the sharpest form of the CLT for sums of independent
random variables. One can prove that if &, ¢ = 1,2... are independent
random variables, and (65) holds then (64) (or, equivalently, (66)) also holds.

Proof
TO BE COMPLETED
Once (63) is established the most natural question to ask is the speed of

convergence. The following theorem gives an upper estimate.

Theorem 61 Cramer-Berry-Essén theorem on the rate of convergence in
the CLT.
Let &,&9,... be i.i.d random variables. Beside the conditions of Theorem
11.3 we also assume finite third absolute moments. There exists a universal
constant C < oo, so that for alln > 1
] CE(|&[%)
_05;13183<00|P(Sn <z)—®(z)| < —n

Remark. With stronger assumptions on the existence higher moments of

(67)

the random variables &;, i.e., the upper bound in (67) can be sharpened.

Proof.
TO BE COMPLETED

Theorem 62 Local central limit theorem, uniform convergence of the den-
sity functions.

Let the i.i.d. random variables £1,&2,... have absolutely continuous com-
mon distribution with density function f and denote by f; the density func-
tion of the rescaled sum S};. (We use the notation of Theorem 11.3.) If the
density function f is bounded then

lim  sup |f(e) - ple)] = 0,

N—=0 _oo<r<oo
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where (1) = exp(—x?/2)/V/27 is the standard normal density function.
The proof relies on a finer Fourier analysis. We omit it.

11.4 Symmetric stable distributions and weak convergence
to them

TO BE COMPLETED

12 The laws of large numbers II.: The strong law

TO BE COMPLETED
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