
lecture 7 – continuous time Markov models, and hidden Markov models

Continuous time Markov models (CTMC) may have discrete states, but instead of x1, x2, x3, . . . we
have a x(t) which expresses the state at any value for t > 0.

If the rates of transition only depend on the current state, then it is still a Markov process. So, if
we had 3 discrete states

P (t) =

 P(X(t) = 1 | x0 = 1) P(X(t) = 2 | x0 = 1) P(X(t) = 3 | x0 = 1)
P(X(t) = 1 | x0 = 2) P(X(t) = 2 | x0 = 2) P(X(t) = 3 | x0 = 2)
P(X(t) = 1 | x0 = 3) P(X(t) = 2 | x0 = 3) P(X(t) = 3 | x0 = 3)

 (1)

Or more generally each element is P(X(t) = j | x0 = i).

How can we calculate P (t)? It is the solution to a series of differential equations.

P (t) = etQ (2)

where Q is a matrix of the instantaneous rates of change from each state to each other state.

e.g. for the chromosome example from last lecturea

Q =

 qAA→AA qAB→AA qBB→AA

qAA→AB qAB→AB qBB→AB

qAA→BB qAB→BB qBB→BB

 (3)

=

 −2r r 0
2r −2r 2r
0 r −2r

 (4)

To solve for the stationary distribution:

Qπ = 0 (5) 0
0
0

 =

 −2r r 0
2r −2r 2r
0 r −2r

 πAA

πAB

πBB

 (6)

−2rπAA + rπAB + 0πBB = 0 (7)

πAB = 2πAA (8)

If your data is in terms of waiting times until the next change of state, then we can model this as
an exponential distribution with a hazard parameter that is the diagonal of the Q matrix.
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