
Lecture 5 – Feb 3 – Markov chains

X = [H,H,H,L,L,M,M,M,L,L,L,L,L,L,L]

where we are presuming that these refer to high, medium, and low positions in a tree.

Discrete time Markov chains

We have a state set S ∈ {H,L,M}, and a sequence of events. The probabilities depend on the the
previous k steps in the chain. So in a first order Markov process, the current state (i) affects the
next state (i + 1), but the next state is independent of the previous state (i − 1) conditional on
state for time i.

So if xt is the state at time t, then:

P(xt+1 | xt, xt−1, . . . x1) = P(xt+1 | xt)

So P(xt+1 | xt) is the transition probability for the Markov chain (or the transition kernel). To
describe a Markov transition probability, you need to describe the from state and the to state:

P =

 p(H → H) p(H →M) p(H → L)
p(M → H) p(M →M) p(M → L)
p(L→ H) p(L→M) p(L→ L)


=

 pHH pHM pHL

pMH pMM pML

pLH pLM pLL


So

P(X) = εHpHHpHHpHLpLLpLMpMMpMMpMLp
6
LL

Where we have a power of 6 at the end because the last 6 transitions in the data are L to L.

P(X | ε, p) = εx1

n∏
t=2

P(xt | xt−1)

= εx1

n∏
t=2

pxt−1,xt

lnL(ε, p) = ln[εx1 ]

n∑
t=2

ln[pxt−1,xt ]

= ln[εx1 ]
∑
i∈S

∑
j∈S

nij ln[pij ]

where nij is the count of the number of times in your data in which you observed an i→ j transition.

We can take the derivative with respect to each parameter. but we find that we can maximize the
likelihood by maximizing each of the ε and p parameters, but this violates our constraints that the
rows of the transition matrix must be probabilities that sum to 1.

1



So we can reparameterize such that pi1 is not a parameter:

pi1 = 1−
|S|∑
j=2

pij

So for all j ≥ 2:

∂`

∂pij
=

nij
pij
− ni1
pi1

0 =
nij
p̂ij
− ni1
p̂i1

So,

p̂i1 =
nij∑
k nik

which makes sense. The MLE for the probability of being in state j in the next step given that
you are currently in i is simply proportion of times that i→ j occurred in your data set out of all
of the transitions that started in state i.
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