
MTH notes on JKK’s lecture 1
For discrete events, Ai in some sample space of SA of possible events, we can make statements
about the probability of Ai occurring, denoted P(Ai).

0 ≤ P(Ai) ≤ 1 ∀Ai ∈ SA (1)

1 =
∑

Ai∈SA

P(Ai) (2)

∀ means “for all”.∑
means a summation over values of a variable. So

∑
Ai∈SA

means we are going to do a summation
over all values of Ai that possible in the sample space. We often number the outcomes from 1 to
|SA| in which case we can write the second eqn as:

1 =

|SA|∑
i=1

P(Ai) (3)

where i is indexing the possible events.

Compound event: combinations of simple events

E.g. Let x be an encoding of the result of a random trial into some specified sample space. So, if
Trevor’s student records the behavior of a lobster we could use the encoding:

Simple vent code P(x = code)

Motionless 0 0.5
Random 1 0.1

Walk toward 2 0.1
Walk away 3 0.1

Turn toward 4 0.1
Turn away 5 0.1

What is the probability of “some motion”?

P(A OR B) = P(A) + P(B)− P(A,B) (4)

P(c ∈ [1, 2, 3, 4, 5]) = P(c = 1) + P(c = 2) + P(c = 3) + P(c = 4) + P(c = 5) (5)

= 0.1 + 0.1 + 0.1 + 0.1 + 0.1 = 0.5 (6)

Note that each of the simple events are mutually exclusive with the others in our encoding. So the
joint probability (P(A,B)) of any of 2 of them occurring in the same random trial is 0. So we don’t
subtract anything. We could also solve this using eqn 2 above:

P(A OR notA) = P(A) + P(not A) = 1 (7)

P(not A) = 1− P(A) = 1− .5 = 0.5 (8)

If our dataset had observations for 2 second we could say: X = [0, 2] or X = [x0, x1] where x0 = 0
is the encoding of “motionless in the first second” and x1 = 2 meand “Walk toward in second two.”

The likelihood is the probability of data identical to what we have observed if the model were true:

P(X) = P(x0, x1) (9)

= P(x0)P(x1 | x0) (10)
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from the general multiplication rule of probabilities: P(A,B) = P(A)P(B | A) = P(B)P(A | B).

To make some progress we could assume that behavior in one second is independent of the behavior
in every other seconds. So P(A | B) = P(A). In this case: P(x1 | x0) = P(x1)

P(X) = P(x0)P(x1 | x0) (11)

= .5× 0.1 = 0.05 (12)

What if we have genetic data. X = [Mg = Aa, Sg = Aa] where Mg is the genotype of a mother at
some locus. and Sg is the genotype of her son. What is the likelihood P(X)?

We need a model. What if we assume that: mating is random, the frequency of A in the population
is some unknown parameter q, and there is no selection on the locus or meiotic drive (or other weird
stuff)?

P(X | q) = P(Mg = Aa | q)P(Sg = Aa |Mg = Aa, q) (13)

P(Mg = Aa | q) = 2q(1− q) from Hardy-Weinberg equil. (14)

How do we get P(Sg = Aa |Mg = Aa, q)? We can use the law of total probability:

P(A) =
∑

B∈SB

[P(A | B)P(B)] (15)

in this case use this to sum over the possible other event (B) that would be helpful to know: dad’s
genotype, Dg. Using Hardy-Weinberg again:

event, d P(Dg = d) P(Sg = Aa |Mg = Aa, Dg = d)

AA q2 0.5 (from Mendel half AA, half Aa)
Aa 2q(1− q) 0.5 (from Mendel one quarter AA, half Aa, one quarter aa)
aa (1− q)2 0.5 (from Mendel half Aa, half aa)

Note that we could condition the third column on q, but the population allele frequencies does not
matter when we know both parent’s genotype. So we drop that from the notation for the sake of
brevity.

G = {AA, Aa, aa} (16)

P(Sg = Aa |Mg = Aa, q) =
∑
d∈G

[P(Sg = Aa |Mg = Aa, Dg = d)P(Dg = d)]

= 0.5
∑
d∈G

[P(Dg = d)]

= 0.5 (17)

interestingly this componenet of the likelihood is not a function of q. But the full likelihood is:

L(q) = P(X | q) = P(Mg = Aa | q)P(Sg = Aa |Mg = Aa, q)

= 2q(1− q)× 0.5

= q(1− q) (18)

So, the likelihood is a function of our unknown parameter q. If you play around with this, you will
find that the highest likelihood is obtained when q = 0.5 and the likelihood is 0.25.

2


