
notes from the week of Feb. 25, 2019

Contents

1 Revisiting the time to MRCA from mutation counts 1

1.1 the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 the likelihood 1

3 A second model 3

1 Revisiting the time to MRCA from mutation counts

1.1 the data

Now we’ll add my sequence to the previous example. We have a tree with 1 or 2 MRCAs. Our data is
X = [3, 2, 6], so our sample size is n = 3.

2 the likelihood

Given that we have worked on similar problems recently, we probably would reach for the Poisson likelihood:

P(X | ut1, ut2, ut3) =
n∏

i=1

P(xi | uti) (1)

=
n∏

i=1

(uti)
xie−uti

xi!
(2)

This is not wrong, but it fails to accurately convey the constraints on the parameter. If you and JKK
share a mitochondrial MRCA more recently than either of you do with me, then t1 = t2 and t3 > t1.

We can express those constraints on the parameters mathematically as an expression of the domain. In
this case:

t1, t2, t3, u ∈ R (3)

0 < u < ∞ (4)

0 < t1 < ∞ (5)

t1 = t2 (6)

t1 ≤ t3 (7)

where the first line says that all four parameters are real numbers (not integers, not complex numbers,
etc.), and then the equations and inequalities constrain the feasible range of them.
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This is fine and it works fine.

Sometimes it is easier to reparameterize in a way that makes the parameters more “orthogonal” (in some
vague sense). What occurs to me is to use ω to represent a mutation-rate-scaled waiting time to the previous
coalescence event. That occurs to me because it is the kind of thing we often do in coalescent theory. It
may not occur to you, and that is OK – you can get the right answers without this reparameterization.

Specifically:

ω1, ω2 ∈ R (8)

0 < ω1, ω2 < ∞ (9)

ut1 = ut2 = 2ω1 (10)

ut3 = 2ω2 + ω1 (11)

We’ll call this model M1 (3 more coming later).

P(X | ω1, ω2,M1) =

n∏
i=1

P(xi | ω1, ω2) (12)

=
ω2
1e

−ω1ω3
1e

−ω1 (ω1 + 2ω2)
6 e−(ω1+2ω2)

2!3!6!
(13)

=
1

2!3!6!

[
ω5
1e

−2ω1
] [

(ω1 + 2ω2)
6 e−(ω1+2ω2)

]
(14)

lnL(ω1, ω2,M1) = − ln(2!3!6!) + [5 ln(ω1)− 2ω1] + [6 ln (ω1 + 2ω2)− ω1 − 2ω2)] (15)

= − ln(2!3!6!) + 5 ln(ω1)− 3ω1 + 6 ln (ω1 + 2ω2)− 2ω2 (16)

where the [] braces just help us see that the likelihood is coming from 2 paths in the tree: the one between
JKK and you x1+x2 = 5 and the one that says that MTH is 6 mutations away from that common ancestor
x3 = 6

You can derive how ω̂1 = 2.5 based soley on x1 + x2 = 5. However it is not clear if that is actually the
maximum likelihood if we use all the data (and we should always use all of the data).

In this parameterization ω2 does not affect the probability of x1, x2 at all. But ω2 and ω1 both appear in
the log likelihood from x3. So if the MLE of ω1 from x3 does not agree with 2.5, then we will have some
tension in the information provided by x1, x2 and x3 about what ω1 should be and the estimate will be
some compromise.

We can figure out MLE by taking the partial derivatives with respect to each of the parameters and then
finding the values of the parameters that make both partial derivatives 0 (while also paying attention to
the boundaries as possible maxima):

∂ lnL

∂ω1
=

5

ω1
− 3 +

6

ω1 + 2ω2
(17)

5

ω̂1
+

6

ω̂1 + 2ω2
= 3 (18)

∂ lnL

∂ω2
=

(6)(2)

ω1 + 2ω2
− 2 (19)

6 = ω1 + 2ω̂2 (20)

3− ω1

2
= ω̂2 (21)
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If (for the time being) we ignore the possibility of one of the parameters being at the edge of its feasible
range, then we can use our solutions for ω̂1 and ω̂2 = 3− ω1

2 at the same time:

5

ω̂1
+

6

ω̂1 + 2ω̂2
= 3 (22)

5

ω̂1
+

6

ω̂1 + 6− ω̂1
= 3 (23)

5

ω̂1
+

6

6
= 3 (24)

5

ω̂1
= 2 (25)

ω̂1 = 2.5 (26)

ω̂2 = 3− 2.5

2
= 1.75 (27)

Once again these MLE make sense because you predict 5 difference between your sequence and JKK, and
ω̂1 + 2ω̂2 = 6, which is exactly the number of changes along the branch leading to my sequence.

Figure 1 shows the log-likelihood broken down into the effects of x1 + x2 = 5 and x3 = 6, and the full
log-likelihood. Note that the lnL in the right panel is simply the sum of the lnL components in the
previous panels.
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Figure 1: (LEFT) lnP(X = 5 | ω1) – this is partial log-likelihood obtained from the fact that there are 5
changes across ν (or ω1). (CENTER) contour plot of lnP(X = 6 | ω1, ω2) – this is partial log-likelihood
obtained from the fact that there are 6 changes across the branch that spans the root of the tree. (RIGHT)
lnP(X = [5, 6] | ω1, ω2) with a dot on the MLE and contours every 0.5 log-liklihood unit intervals

3 A second model

If we consider the possibility that you and I share a MRCA of our mitochondria more recently than either
of us do with JKK, then we can formulate a very similar model. We can call it M2. Now ω1,2 denotes the
branch length from the present to the MRCA of you and MTH. ω2,2 will denote the branch length from
that ancestor to our common ancestor with JKK. Here the second 2 in the subscript is just helping us not
confuse the omegas between the models.
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Our data doesn’t change of course. On the shorter path we have 2 and 6 changes. The 3 difference between
JKK and the MRCA of us is now the stretched out over the 2 branches that span the root of the tree.

Figure 2 sketches out the 4 models we’ll consider.

M0 M1 M2 M3

Figure 2: Nomenclature of models. M1 is described in section 2, and M2 is described in section 3

The likelihood still connects the model to the data by assuming that the data are Poisson-distributed
counts with an expectation equal to the sum of branch lengths covered. Skipping some of the algebra we
get:

P(X | ω1,2, ω2,2,M2) =
1

2!3!6!

[
ω8
1,2e

−2ω1,2
] [

(ω1,2 + 2ω2,2)
3 e−(ω1,2+2ω2,2)

]
(28)

lnL(ω1,2, ω2,2,M2) = − ln(2!3!6!) + 8 ln(ω1,2)− 3ω1,2 + 3 ln (ω1,2 + 2ω2,2)− 2ω2,2 (29)

∂ lnL

∂ω1,2
=

8

ω1,2
− 3 +

3

ω1,2 + 2ω2,2
(30)

∂ lnL

∂ω2,2
=

6

ω1,2 + 2ω2,2
− 2 (31)

ω̂2,2 = 1.5− ω1,2

2
(32)

8

ω̂1,2
− 3 +

3

ω̂1,2 + 3− ω̂1,2
= 0 (33)

8

ω̂1,2
− 2 = 0 (34)

ω̂1,2 = 4 (35)

This is a pleasing solution when you look at the fact that we have a total of 8 changes over the 2 branches
of length ω1,2. It is less pleasing when you plug into equation (32) and find that ω̂2,2 = −0.5. While that
does maximize the likelihood (and in fact gives us the same likelihood as we found in model M1), this
combination of parameters also violates the feasible range of parameter ω2,2 which cannot be negative.

Looking at the likelihood surface (see Figure 3) makes it clearer what is going on. Once you prefer a value
of ω1,1 that is greater than the number of changes that span the root of the tree, then you prefer smaller
and smaller values of ω2,2

In this case we can find the MLE of ω1,2 conditional on ω2,2 = 0 by simply substituting this into the
equations from the partial derivative (equation 30):

∂ lnL

∂ω1,2
=

8

ω1,2
− 3 +

3

ω1,2 + 2ω2,2
(36)
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8

ω̂1,2
− 3 +

3

ω̂1,2
= 0 (37)

11

ω̂1,2
= 3 (38)

ω̂1,2 =
11

3
(39)

This answer also makes sense because if the branch to the earliest common ancestor has length 0, then you
have 3 equally distant (in terms of time) tips with a total of 11 changes. Under the molecular clock the
best branch length is one that implies 11/3 changes per branch.

This is also the likelihood under model M0. As an exercise, you should also be able to verify that this is
the best likelihood that you can get under M3.
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Figure 3: (LEFT) Contour plot of lnP(X = 3 | ω1,2, ω2,2) – this is partial log-likelihood obtained from the
fact that there are 3 changes across the branch that spans the root of the tree. (RIGHT) lnP(X = [8, 3] |
ω1,2, ω2,2) with a dot on the MLE and contours every 0.5 log-liklihood unit intervals
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