
cmd line args

standard input Your process standard output

standard error

return code

cmd line args

standard input Your process

filesystem

standard output

standard error

return code

cmd line args

standard input

environment

signals

Your process

filesystem

standard output

standard error

return code

rest of OS API

ports

cmd line args

standard input Your process standard output

standard error

output filesinput files

return code
Working dir

What happened? (more or less)

• I clicked on the Terminal.app icon in the Dock
• Some device driver noted that a click had occurred.
• The OS noticed
• The OS checked where the cursor was
• The OS did some calculations and determined that it was in the “Dock”
• The OS told the Dock process that a click had occurred.
• By asking the OS and doing calculations, the Dock determined that it

was the Terminal.app icon that was clicked.
• The Dock process told the OS to tell the Finder to launch Terminal.app
• Terminal was launched and it negotiated with the OS and
WindowServer to display a window.
• The Terminal launched a process called login
• login read a history file. Based on this information it wrote a message

to its standard output stream.
• Terminal is reading login’s output, and Terminal makes the window

display the message.
• login launched a process called bash

• bash initialized itself (by reading files such as
/Users/mholder/.bash profile)
• bash wrote its prompt (the characters ‘∼ 500 $ ’) to its standard error

stream.
• Terminal has wrapped up bash’s standard streams (input, output and

error stream). When it detects that bash wrote something Terminal
does some OS calls to draw the characters in the window.
• bash told the OS through some function we’ll call “readNextLineOfInput”

that it wanted to read the next line from standard input. Because there
was no input, the execution of the bash’s process hangs.
• I typed ‘l’

1. a keyboard device drive noticed the key was hit and told the OS
2. the OS asked the window manager what application had “focus” –

the answer was Terminal
3. The OS told the Terminal that there was a key-down event
4. The Terminal (with help of OS) the letter ‘l’
5. The Terminal wrote ‘l’ to a stream that (via OS functions) was

connected to bash standard input
6. The Terminal displayed the letter ‘l’ in the Window
7. Because it was not a carriage return, the ‘readNextLineOfInput’

function stored the character, but did not return anything to bash.
So bash still has not heard anything yet.

• I typed ‘s’ – same steps as for when I typed ‘l’
• I typed the ‘return’ key – steps 1-6 occurred as before.
• The ‘readNextLineOfInput’ function that bash called returned the string

‘ls<newline>’
• bash (through rules we’ll talk about later) determined that ‘ls’ means

that I wanted to run the program called ls with no command line
arguments.
• Via negotiations with the OS, bash launched ls
• Any standard input of bash will now be redirected to ls, and the standard

output of ls will be written to the stream, but it will be redirected to
bash’s stdandard output.
• ls checked to see if it got any command line arguments (it did not).
• ls asked the OS what it should use as its working directory (The OS

said ’/Users/mholder’).
• ls asked the OS for the contents of the file ’/Users/mholder’
• The OS dealt with some filesystem device driver software to get the

contents and return the answer.
• ls filtered out any entries in that file that started ‘.’

• ls queried the OS to find out how many characters wide its standard
output was.
• ls formatted the entries such that they fit nicely in the width.
• ls wrote the formatted strings to its standard output.
• That standard out from ls is passed to bash’s standard output
• Terminal is reading bash’s output, and it makes sure that the output is

displayed in the window that we see.
• The ls process is exits
• bash detects that ls exited. It writes it’s prompt again.
• Terminal displays the latest output from bash, which is the new prompt.

ls never deals with bash (and certainly not with processes further up
stream such as login or Terminal). ls just:

• checks its command-line arguments,
• figures out its working directory (asks the the operating system some

context information),
• composes an answer to its assigned task,
• writes the answer to its standard output stream,
• exits

bash never deals with login or Terminal. It just:

1. checks its command-line arguments,
2. asks the the operating system some context information,
3. reads a line of input from standard input,
4. takes the action requested,
5. writes “the answer” to through its output and error streams,
6. goes back to step 3

bash is a shell that is often used to launch other processes. So the “action”
in step 4 is often: “launch a process and redirect your streams to the new
process until it exits.”

Shells

The interface to the OS and kernel is a huge number of functions – it easy
to invoke these functions in the wrong way, and their “raw” response is
often cryptic.

Shells:

1. protect the kernel – rather than pounding the kernel with our typos, the
shell composes valid requests.

2. make the raw output of system functions human-readable.

The kernel does not understand text like ‘ls’

Shells are simple programming language interpreters that take text that
humans write, and convert it into instructions for the machine.

1. The shell is a way of creating a process from the executable and
controlling the process’ initial context:
(a) Specifies command line argument for the process
(b) You can control the environment of the process easily through a shell

(we won’t tweak the environment much in this course)
(c) The shell’s working directory becomes the process’s working directory
(d) The shell controls what happens to the process’ standard streams

(in, out, and err)
(e) The shell captures the return code of the executable as the shell

variable ’?’
2. Failures of commands/executables are denoted by any return code other

than 0
3. >

will redirect the standard output of a process to a file.
4. 2>

will redirect the standard error stream of a process to a file.
5. <

can be used to redirect a file as standard input
6. |

redirects standard output of one process to standard input of another.

Bash line processing:

1: Read a line of input (using an OS file-reading function)
2: Tokenize and expand variables
3: The first token is the COMMAND
4: if COMMAND is “exit” then
5: the bash shell exits
6: else if COMMAND is a special bash keyword then
7: take the required action
8: else
9: COMMAND should be an executable

10: if An executable called COMMAND is found on bash’s search path
then

11: Launch the executable; give it the other tokens as cmd-line args.
12: Store the return code of the executable in the variable ‘?’
13: else
14: Give an error message
15: Store 127 in the variable ‘?’
16: end if
17: end if
18: Go back to step 1

bash tokenization and variable expansion

1. tokens are usually delimited by whitespace
2. to make whitespace a part of a token you have to use quotes or the

backslash (escape) mechanism
3. the $ in a bash command triggers replacement of the following variable

name with the variable’s value
4. single quotes prevent variable substitution
5. double quotes allow variable substitution

Bash COMMAND dispatching (How the shell finds executables):

1: if COMMAND is a path with a directory then
2: if the path COMMAND does not exist then
3: print -bash: COMMAND: No such file or directory and

return 127
4: else if COMMAND is not flagged as an executable then
5: print -bash: COMMAND: Permission denied and return 126
6: else
7: run the executable COMMAND and return its return code
8: end if
9: else

10: for each DIRECTORY in $PATH do
11: if the DIRECTORY has an executable called COMMAND then
12: run the executable DIRECTORY/COMMAND and return its

return code
13: end if
14: end for
15: print -bash: COMMAND: command not found and return 127
16: end if

Directories and the filesystem

1. hierarchical (like a phylogenetic classification where the higher level
groups correspond to directories)

2. directories are separated by /
3. you can specify paths by:

(a) their absolute location (always starts with / for the root of the file
system), or

(b) the path relative to the current working directory.
4. The current directory is denoted with a dot .
5. The parent directory is denoted with a two dots ..
6. The grandparent directory is :../..
7. These rules for finding file paths apply to the OS library calls for opening

files as well as bash (In python we’ll see the same rules).
8. filename that start with a dot are “hidden”

ls list the contents of a directory

ls -l .Trash
echo writes the command line arguments (separating them with

a space) to standard error

echo hi there
cd change the shell’s working directory

cd Desktop
mkdir create a new directory

mkdir tmp
rm Remove a file (or directory if the -r is used). Be Careful!! –

their is no UNDO !

rm a.out
cp Copy a file (or directory if the -r is used) to a new location

cp src dest

mv Move a file (or directory if the -r is used) to a new location

mv orig new
man Uses the PAGER interface to look at a help page for a

command (it may be easier to use google to find the man
page)

man rm
pwd writes the path to the current working directory to standard

out

pwd
env writes all of the shell variables to standard out

env
ssh starts a login on another machine

ssh phylo.bio.ku.edu
scp like cp but can copy to a remote machine

scp src 129.237.138.127:dest

cat, tail, head Write contents of a file to standard out

cat x.txt
wc Counts words, characters, or lines in a file

wc -l x.txt
which Writes the full path to an executable to standard out

which ls
ps Lists the running processes

ps auxww
chmod Change the mode of a file. This is how we grant

read/write/executable permissions.

chmod +x echo.py would make echo.py executable

Efficiency tricks

1. arrow up and arrow down to move through your command history
2. Control-a moves the cursor to the front of a line; Control-e to the

end.
3. Meta-f moves the cursor forward one word; Meta-b move back one

word.
4. history displays your history. The command !34 would repeat the 34th

command.
5. Hitting the Tab-key when you are typing in bash will autocomplete paths
6. cd - takes you back to your previous working directory.
7. use a alias shortname=’long command here’ in your home directory’s

.bash profile file to make shortcuts to commonly used, but
cumbersome commands (one to open a file in your preferred text editor
is nice).

8. On Mac, open filename opens the path ‘filename’ in whatever the Finder
thinks is the appropriate application.

Software – instructions for a computer.

A program – text that conforms to the definition of a

programming language. The program is not written in the

binary operations that the hardware can operate on. It has to

be translated into the language of the machine.

Compiled languages:
1. Your program → (compiler) → executable

Then you have to launch the executable:

2. executable → (kernel) → running process → Your results

Interpreted languages:
1. interpreter executable → (kernel) → running interpreter

process

2. Your script → (interpreter process) → Your results

Python

1. an interpreted procedural language with good support for

lots of programming tasks

2. free

3. terse, but clear syntax

4. platform-independent (and your python programs will be if

you don’t do weird things)

5. execution speed is slow (but that rarely matters)

6. mature and stable (lots of libraries, runs reliably on any

modern computer)

7. Comes with standard sys, os, and subprocess libraries for

interacting with the Operating System.

Memory

1. internally all memory is binary – bytes on the hard disk

2. a semantic (interpretation) step is needed to express complex

data

