Homework #7

(due Monday, May 6)

You can use the shortened short_mutt_gamete_event.tsv (click on this link and download) data for this homework (see hw 6 for description of the data format).

We'll look at the same model that we used in the last homework, but we'll take a Bayesian perspective. So you'll need to state prior probability distributions for all input parameters/models.

- #1. Implement MCMC for the two-parameter (r and w) model. Report the posterior means and 95% credible intervals for the 2 parameters.
- #2. Report the PRSF (gelman diagnostic) for your MCMC runs.
- #3. Implement a reversible-jump MCMC version of your code to examine the w=0 as a special case submodel. Report the probability that w>0. You'll need to design some move that takes you from the one parameter model (w=0) to the two parameter (w>0), and derive the Hasting's ratio for that move.

References:

- hastingsRatio.pdf
- code directory for MTH's lectures. coda.R and continuous-mcmc.py are particularly relevant.
- http://patricklam.org/teaching/convergence_print.pdf